热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

归一化、标准化、正则化公式相关小记「建议收藏」

归一化、标准化、正则化公式相关小记「建议收藏」特征缩放面对特征数量较多的时候,保证这些特征具有相近的尺度(无量纲化),可以使梯度下降法更快的收敛。这两张图代表数据是否均一化的最优解

作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处


目录

特征缩放

归一化(Normalization):

定义:

什么叫量纲:

分类和公式:

min-max归一化(Min-Max Normalization)–区间(0,1)

平均归一化–区间(-1,1)

非线性归一化

标准化(Standardization):

Z-Score 标准化 “>最常见的标准化方法->Z-Score 标准化 

中心化: 

正则化:

过拟合 

公式和原理

两个正则化损失函数等高线图

没有正则化的损失函数等高线和最优化示意图

L1正则化(Lasso回归)损失函数等高线示意图 

 L2正则化(岭回归)损失函数等高线示意图

归一化和正则化在数据、参数、和结果上的区别



特征缩放

        面对特征数量较多的时候,保证这些特征具有相近的尺度(无量纲化),可以使梯度下降法更快的收敛。这两张图代表数据是否均一化的最优解寻解过程(左边是未归一化的),从这两张图可以看出,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解

归一化、标准化、正则化公式相关小记「建议收藏」

 在前边讲梯度下降的时候咱们也提到过,一般在最优化前会加归一化操作

机器学习最优化算法之梯度下降_RayChiu757374816的博客-CSDN博客

 原因就是这样会减少数据模型的震荡,以最快的速度达到最优化。

缩放的方法就包括了各种归一化和标准化操作。

归一化(Normalization):

定义:

        就是把数据压缩映射到一定区间,例如(0,1) (-1,1) (0,255)区间,会把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权。

        这里还是强调一下归一化是针对的数据

什么叫量纲:

        就是通过一些手段将不同单位不同场景类型的数据去掉单位来表示。

分类和公式:


min-max归一化(Min-Max Normalization)–区间(0,1)

归一化、标准化、正则化公式相关小记「建议收藏」

        有人把它还称作rescaling 

适用场景:


  • 如果对输出结果范围有要求,用归一化

  • 如果数据较为稳定,不存在极端的最大最小值,用归一化

缺点:这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

平均归一化–区间(-1,1)

 归一化、标准化、正则化公式相关小记「建议收藏」

 (注意这中间的mean(x)、min(x) 和 max(x) 分别是样本数据的平均值、最小值和最大值)

适用场景:


  • 矩阵分解


非线性归一化

        log对数函数转换y = log10(x) 、反正切函数转换x’ = atan(x)*(2/pi)、sigmoid变换、softmax变换以及L2范数归一化(见下图)

归一化、标准化、正则化公式相关小记「建议收藏」

标准化(Standardization):

最常见的标准化方法->Z-Score 标准化 

 归一化、标准化、正则化公式相关小记「建议收藏」

其中 归一化、标准化、正则化公式相关小记「建议收藏」 和 归一化、标准化、正则化公式相关小记「建议收藏」 分别是样本数据的均值(mean)和标准差(std)。  数据会变成一个均值为 0 ,方差为 1 的分布 

适用场景:


  • SVM、LR、神经网络

  • 如果数据存在异常值和较多噪音,用标准化,可以间接通过中心化避免异常值和极端值的影响


中心化: 

         也叫零均值处理,就是将每个原始数据减去这些数据的均值:

x’ = x – μ

正则化:

过拟合 

        不加正则化训练出来的模型: 

归一化、标准化、正则化公式相关小记「建议收藏」

        加了正则的模型表现 

归一化、标准化、正则化公式相关小记「建议收藏」

        可以看到训练出来的模型太复杂,会影响使用,容易过拟合。 

公式和原理

        正则化主要用于避免过拟合的产生和减少网络误差。

归一化、标准化、正则化公式相关小记「建议收藏」

        其中,第 1 项是经验风险,第 2 项是正则项, 归一化、标准化、正则化公式相关小记「建议收藏」 为调整两者之间关系的系数。常见的有正则项有 L1 正则 和 L2 正则 以及 Dropout

        L1和L2正则公式和原理详细内容请移步:我这样说范数和模你应该懂L1、L2正则咋回事了吧_RayChiu757374816的博客-CSDN博客

两个正则化损失函数等高线图


没有正则化的损失函数等高线和最优化示意图

归一化、标准化、正则化公式相关小记「建议收藏」

L1正则化(Lasso回归)损失函数等高线示意图 

 归一化、标准化、正则化公式相关小记「建议收藏」

        lasso回归最终会等到稀疏矩阵,好多参数会是0,也就是筛选了特征,把对结果贡献很低的特征给过滤掉了,最终模型只关注非零的特征。

 L2正则化(岭回归)损失函数等高线示意图

 归一化、标准化、正则化公式相关小记「建议收藏」

归一化和正则化在数据、参数、和结果上的区别

        这里谈一下和归一化的关系,我理解归一化是为了使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响,这样处理使得训练时减少震荡,能够更加快速的训练,然而归一化不是必须的,不归一化最多是会延长最优化的时间,而不影响训练出来的模型使用。而正则化是针对的参数、系数theta或者叫w、b,最终的目的是让参数数值相差很小,比如不正则化可能第一个参数是100,第二个是1,加正则化后可能最终的参数第一个是1.013第二个是0.892,这样泛化能力强了,会影响模型的生成和使用,也就是归一化不影响推理结果,正则会影响。

 参考:2(1).数据预处理方法 – nxf_rabbit75 – 博客园

6.3. Preprocessing data — scikit-learn 1.0 documentation

学习笔记163—理解模型正则化:L1正则、L2正则(理论+代码)-上地信息-shangdixinxi.com

【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】 


推荐阅读
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  •     目标检测是计算机视觉一个非常重要的子任务。目标检测需要发现并准确定位自然图片中的物体。在2012年之前,目标检测主要基于手工设计的特征以及传统分类器。2012年以后,出现了 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
  • 在Matlab中,我尝试构建了一个神经网络模型,用于预测函数 y = x^2。为此,我设计并实现了一个拟合神经网络,并对其进行了详细的仿真和验证。通过调整网络结构和参数,成功实现了对目标函数的准确估计。此外,还对模型的性能进行了全面评估,确保其在不同输入条件下的稳定性和可靠性。 ... [详细]
  • 深度学习: 目标函数
    Introduction目标函数是深度学习之心,是模型训练的发动机。目标函数(objectfunction)损失函数(lossfunction)代价函数(costfunction) ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • cs231n Lecture 3 线性分类笔记(一)
    内容列表线性分类器简介线性评分函数阐明线性分类器损失函数多类SVMSoftmax分类器SVM和Softmax的比较基于Web的可交互线性分类器原型小结注:中文翻译 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点 ... [详细]
  • 机器学习算法常见面试题目总结,Go语言社区,Golang程序员人脉社 ... [详细]
  • 圣诞节到了,智能菌想送你一份礼物
    关注网易智能,聚焦AI大事件,读懂下一个大时代!(机器学习算法地图见文末)圣诞节的赠书活动来了! ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
author-avatar
johnnyLei
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有