热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

广义线性模型AndrewNg机器学习公开课笔记1.6

转载请注明出处:http:www.cnblogs.comBYRans前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设:在分类问题中我们假设:他们都是广义线性模

转载请注明出处:http://www.cnblogs.com/BYRans/

     前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设:

     技术分享

     在分类问题中我们假设:

    技术分享

     他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族。

指数分布族(The Exponential Family)

  如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族:

  技术分享

    公式中y是随机变量;h(x)称为基础度量值(base measure);

    η称为分布的自然参数(natural parameter),也称为标准参数(canonical parameter);

    T(y)称为充分统计量,通常T(y)=y;

    a(η)称为对数分割函数(log partition function);

    技术分享本质上是一个归一化常数,确保技术分享概率和为1。

    当T(y)被固定时,a(η)、b(y)就定义了一个以η为参数的一个指数分布。我们变化η就得到这个分布的不同分布。

    伯努利分布属于指数分布族。伯努利分布均值为φ,写为Bernoulli(φ),是一个二值分布,y ∈ {0, 1}。所以p(y = 1; φ) = φ; p(y = 0; φ) = 1 − φ。当我们变化φ就得到了不同均值的伯努利分布。伯努利分布表达式转化为指数分布族表达式过程如下:

    技术分享

    其中,

技术分享

技术分享

 

      再举一个高斯分布的例子,高斯分布也属于指数分布族。由高斯分布可以推导出线性模型(推导过程将在EM算法中讲解),由星型模型的假设函数可以得知,高斯分布的方差技术分享与假设函数无关,因而为了计算简便,我们设方差技术分享=1。高斯分布转化为指数分布族形式的推导过程如下:

技术分享

其中

技术分享

 

      许多其他分部也属于指数分布族,例如:伯努利分布(Bernoulli)、高斯分布(Gaussian)、多项式分布(Multinomial)、泊松分布(Poisson)、伽马分布(Gamma)、指数分布(Exponential)、β分布、Dirichlet分布、Wishart分布。

 

 

构建广义线性模型(Constructing GLMs)

      在分类和回归问题中,我们通过构建一个关于x的模型来预测y。这种问题可以利用广义线性模型(Generalized linear modelsGMLs来解决。构建广义线性模型我们基于三个假设,也可以理解为我们基于三个设计决策,这三个决策帮助我们构建广义线性模型:

  1. 技术分享,假设技术分享满足一个以为参数的指数分布。例如,给定了输入x和参数θ,那么可以构建y关于的表达式。
  2. 给定x,我们的目标是要确定T(y),即技术分享。大多数情况下T(y)=y,那么我们实际上要确定的是技术分享。即给定x,假设我们的目标函数是技术分享。(在逻辑回归中期望值是,因此目标函数h是φ;在线性回归中期望值是μ,而高斯分布中技术分享,因此线性回归中目标函数技术分享)。
  3. 假设自然参数η和x是线性相关,即假设:技术分享

      假设有一个预测问题:基于特征商店促销活动、最近的广告、天气、星期几等特征x,来预测商店在任一小时内的顾客数目y。

      根据概率知识可知,x、y符合泊松分布。泊松分布属于指数分布族,我们可以利用上面的3个假设,构建一个广义线性模型来进行构建预测模型。

GLMs构建最小二模型

      线性回归中的优化目标y(损失函数)是由最小二乘法得到的,可以使用广义线性模型构建最小二乘模型。三个假设:

  1. 最小二乘法得到的目标变量y是一个连续值,我们假设给定x下y的分布符合高斯分布。假设1中的ExponentialFamily(η)就是高斯分布。
  2. 在高斯分布中技术分享目标函数技术分享
  3. 假设:技术分享

      推导过程如下:

技术分享

      第一步变换根据假设2:技术分享

      第二步变换根据y|x; θ N(μ, σ2),高斯分布的期望值是μ

      第三步根据假设1:高斯分布中技术分享

      第四步根据假设3:技术分享

      现在已经使用广义线性模型构建出了最小二乘模型,接下来的工作就是利用梯度下降、牛顿方法来求解θ。梯度下降、牛顿方法的内容请参考之前的讲义。

GLMs构建逻辑回归

      逻辑回归可以用于解决二分类问题,而分类问题目标函数y是二值的离散值,技术分享。根据统计知识,二分类问题可以选择伯努利分布来构建模型。

      在伯努利分布的指数分布族表达式中我们已知:技术分享,从而得到技术分享

      构建广义线性模型的三个假设:

  1. 假设符合伯努利分布,技术分享
  2. 技术分享,伯努利分布中技术分享
  3. 技术分享

推导过程如下:

    技术分享

      同最小二乘模型一样,接下来的工作就由梯度下降或牛顿方法来完成。

      注意一下上面的推到结果技术分享,回忆一下,在逻辑回归中,我们选用Sigmoid函数技术分享

      之所以在逻辑回归中选用这个g(z)作为Sigmoid函数是由一套理论作支持的,这个理论便是广义线性模型。

广义线性模型 - Andrew Ng机器学习公开课笔记1.6


推荐阅读
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 深入解析Unity3D游戏开发中的音频播放技术
    在游戏开发中,音频播放是提升玩家沉浸感的关键因素之一。本文将探讨如何在Unity3D中高效地管理和播放不同类型的游戏音频,包括背景音乐和效果音效,并介绍实现这些功能的具体步骤。 ... [详细]
  • 本文介绍了如何在AngularJS应用中使用ng-repeat指令创建可单独点击选中的列表项,并详细描述了实现这一功能的具体步骤和代码示例。 ... [详细]
  • 为何Compose与Swarm之后仍有Kubernetes的诞生?
    探讨在已有Compose和Swarm的情况下,Kubernetes是如何以其独特的设计理念和技术优势脱颖而出,成为容器编排领域的领航者。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 本文详细介绍了iOS应用的生命周期,包括各个状态及其转换过程中的关键方法调用。 ... [详细]
  • 随着Linux操作系统的广泛使用,确保用户账户及系统安全变得尤为重要。用户密码的复杂性直接关系到系统的整体安全性。本文将详细介绍如何在CentOS服务器上自定义密码规则,以增强系统的安全性。 ... [详细]
  • Python3爬虫入门:pyspider的基本使用[python爬虫入门]
    Python学习网有大量免费的Python入门教程,欢迎大家来学习。本文主要通过爬取去哪儿网的旅游攻略来给大家介绍pyspid ... [详细]
  • 3DSMAX制作超现实的体育馆模型
    这篇教程是向脚本之家的朋友介绍3DSMAX制作超现实的体育馆模型方法,教程制作出来的体育馆模型非常地不错,不过教程有点难度,需要有一定基础的朋友学习,推荐到脚本之家,喜欢的朋友可 ... [详细]
  • JavaScript 页面卸载事件详解 (onunload)
    当用户从页面离开时(如关闭页面或刷新页面),会触发 onunload 事件,此时可以执行预设的脚本。需要注意的是,不同的浏览器对 onunload 事件的支持程度可能有所不同。 ... [详细]
  • 在Notepad++中配置Markdown语法高亮及实时预览功能
    本文详细介绍了如何在Notepad++中配置Markdown语法高亮和实时预览功能,包括必要的插件安装和设置步骤。 ... [详细]
author-avatar
_Terr1鄭x宜_F
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有