热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

广义线性模型AndrewNg机器学习公开课笔记1.6

转载请注明出处:http:www.cnblogs.comBYRans前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设:在分类问题中我们假设:他们都是广义线性模

转载请注明出处:http://www.cnblogs.com/BYRans/

     前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设:

     技术分享

     在分类问题中我们假设:

    技术分享

     他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族。

指数分布族(The Exponential Family)

  如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族:

  技术分享

    公式中y是随机变量;h(x)称为基础度量值(base measure);

    η称为分布的自然参数(natural parameter),也称为标准参数(canonical parameter);

    T(y)称为充分统计量,通常T(y)=y;

    a(η)称为对数分割函数(log partition function);

    技术分享本质上是一个归一化常数,确保技术分享概率和为1。

    当T(y)被固定时,a(η)、b(y)就定义了一个以η为参数的一个指数分布。我们变化η就得到这个分布的不同分布。

    伯努利分布属于指数分布族。伯努利分布均值为φ,写为Bernoulli(φ),是一个二值分布,y ∈ {0, 1}。所以p(y = 1; φ) = φ; p(y = 0; φ) = 1 − φ。当我们变化φ就得到了不同均值的伯努利分布。伯努利分布表达式转化为指数分布族表达式过程如下:

    技术分享

    其中,

技术分享

技术分享

 

      再举一个高斯分布的例子,高斯分布也属于指数分布族。由高斯分布可以推导出线性模型(推导过程将在EM算法中讲解),由星型模型的假设函数可以得知,高斯分布的方差技术分享与假设函数无关,因而为了计算简便,我们设方差技术分享=1。高斯分布转化为指数分布族形式的推导过程如下:

技术分享

其中

技术分享

 

      许多其他分部也属于指数分布族,例如:伯努利分布(Bernoulli)、高斯分布(Gaussian)、多项式分布(Multinomial)、泊松分布(Poisson)、伽马分布(Gamma)、指数分布(Exponential)、β分布、Dirichlet分布、Wishart分布。

 

 

构建广义线性模型(Constructing GLMs)

      在分类和回归问题中,我们通过构建一个关于x的模型来预测y。这种问题可以利用广义线性模型(Generalized linear modelsGMLs来解决。构建广义线性模型我们基于三个假设,也可以理解为我们基于三个设计决策,这三个决策帮助我们构建广义线性模型:

  1. 技术分享,假设技术分享满足一个以为参数的指数分布。例如,给定了输入x和参数θ,那么可以构建y关于的表达式。
  2. 给定x,我们的目标是要确定T(y),即技术分享。大多数情况下T(y)=y,那么我们实际上要确定的是技术分享。即给定x,假设我们的目标函数是技术分享。(在逻辑回归中期望值是,因此目标函数h是φ;在线性回归中期望值是μ,而高斯分布中技术分享,因此线性回归中目标函数技术分享)。
  3. 假设自然参数η和x是线性相关,即假设:技术分享

      假设有一个预测问题:基于特征商店促销活动、最近的广告、天气、星期几等特征x,来预测商店在任一小时内的顾客数目y。

      根据概率知识可知,x、y符合泊松分布。泊松分布属于指数分布族,我们可以利用上面的3个假设,构建一个广义线性模型来进行构建预测模型。

GLMs构建最小二模型

      线性回归中的优化目标y(损失函数)是由最小二乘法得到的,可以使用广义线性模型构建最小二乘模型。三个假设:

  1. 最小二乘法得到的目标变量y是一个连续值,我们假设给定x下y的分布符合高斯分布。假设1中的ExponentialFamily(η)就是高斯分布。
  2. 在高斯分布中技术分享目标函数技术分享
  3. 假设:技术分享

      推导过程如下:

技术分享

      第一步变换根据假设2:技术分享

      第二步变换根据y|x; θ N(μ, σ2),高斯分布的期望值是μ

      第三步根据假设1:高斯分布中技术分享

      第四步根据假设3:技术分享

      现在已经使用广义线性模型构建出了最小二乘模型,接下来的工作就是利用梯度下降、牛顿方法来求解θ。梯度下降、牛顿方法的内容请参考之前的讲义。

GLMs构建逻辑回归

      逻辑回归可以用于解决二分类问题,而分类问题目标函数y是二值的离散值,技术分享。根据统计知识,二分类问题可以选择伯努利分布来构建模型。

      在伯努利分布的指数分布族表达式中我们已知:技术分享,从而得到技术分享

      构建广义线性模型的三个假设:

  1. 假设符合伯努利分布,技术分享
  2. 技术分享,伯努利分布中技术分享
  3. 技术分享

推导过程如下:

    技术分享

      同最小二乘模型一样,接下来的工作就由梯度下降或牛顿方法来完成。

      注意一下上面的推到结果技术分享,回忆一下,在逻辑回归中,我们选用Sigmoid函数技术分享

      之所以在逻辑回归中选用这个g(z)作为Sigmoid函数是由一套理论作支持的,这个理论便是广义线性模型。

广义线性模型 - Andrew Ng机器学习公开课笔记1.6


推荐阅读
  • 在项目部署后,Node.js 进程可能会遇到不可预见的错误并崩溃。为了及时通知开发人员进行问题排查,我们可以利用 nodemailer 插件来发送邮件提醒。本文将详细介绍如何配置和使用 nodemailer 实现这一功能。 ... [详细]
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • 本文详细探讨了JavaScript中的作用域链和闭包机制,解释了它们的工作原理及其在实际编程中的应用。通过具体的代码示例,帮助读者更好地理解和掌握这些概念。 ... [详细]
  • 算法题解析:最短无序连续子数组
    本题探讨如何通过单调栈的方法,找到一个数组中最短的需要排序的连续子数组。通过正向和反向遍历,分别使用单调递增栈和单调递减栈来确定边界索引,从而定位出最小的无序子数组。 ... [详细]
  • 本文探讨了使用C#在SQL Server和Access数据库中批量插入多条数据的性能差异。通过具体代码示例,详细分析了两种数据库的执行效率,并提供了优化建议。 ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 在使用STM32Cube进行定时器配置时,有时会遇到延时不准的问题。本文探讨了可能导致延时不准确的原因,并提供了解决方法和预防措施。 ... [详细]
  • 深入理解Lucene搜索机制
    本文旨在帮助读者全面掌握Lucene搜索的编写步骤、核心API及其应用。通过详细解析Lucene的基本查询和查询解析器的使用方法,结合架构图和代码示例,带领读者深入了解Lucene搜索的工作流程。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • Appium + Java 自动化测试中处理页面空白区域点击问题
    在进行移动应用自动化测试时,有时会遇到某些页面没有返回按钮,只能通过点击空白区域返回的情况。本文将探讨如何在Appium + Java环境中有效解决此类问题,并提供详细的解决方案。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 本文深入探讨了线性代数中向量的线性关系,包括线性相关性和极大线性无关组的概念。通过分析线性方程组和向量组的秩,帮助读者理解这些概念在实际问题中的应用。 ... [详细]
  • 本文介绍如何在 C++ 中使用链表结构存储和管理数据。通过具体示例,展示了静态链表的基本操作,包括节点的创建、链接及遍历。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 探索新一代API文档工具,告别Swagger的繁琐
    对于后端开发者而言,编写和维护API文档既繁琐又不可或缺。本文将介绍一款全新的API文档工具,帮助团队更高效地协作,简化API文档生成流程。 ... [详细]
author-avatar
_Terr1鄭x宜_F
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有