热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

关于Openfire集群源码的分析

这篇文章主要介绍了关于Openfire集群源码的分析,内容比较详细,具有一定参考价值,需要的朋友可以了解下。

本文介绍了openfire的相关内容,这个东西现在用的人好像不多了。算了,我们看看具体内容。

openfire是什么?

    Openfire 采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议。Openfire安装和使用都非常简单,并利用Web进行管理。单台服务器可支持上万并发用户。由于是采用开放的XMPP协议,您可以使用各种支持XMPP协议的IM客户端软件登陆服务。如果你想轻易地构建高效率的即时通信服务器,那就选择它吧!

openfire能做什么?

         我们要了解Openfire,首先要了解XMPP协议,因为Openfire是用Java语言编写的,基于XMPP协议、开源的实时协作的服务器。Openfire具有跨平台的能力,Openfire与客户端采用的是C/S架构,一个服务器要负责为连接在其上的客户端提供服务。Openfire客户端有spark,pidgin, Miranda IM,iChat等,用户如果自己开发客户端,可以采用遵循GPL的开源Client端API--Smack。Openfire服务器端支持插件开发,如果开发者需要添加新的服务,可以开发出自己的插件后,安装至服务器,就可以提供服务,如查找联系人服务就是以插件的形式提供的。

openfire如果用户量增加后为了解决吞吐量问题,需要引入集群,在openfire中提供了集群的支持,另外也实现了两个集群插件:hazelcast和clustering。为了了解情况集群的工作原理,我就沿着openfire的源代码进行了分析,也是一次学习的过程。
首先理解集群的一些简单概念

集群的目的是让多个实例像一个实例一样运行,这样就可以通过增长实例来增长计算能力。也就是所谓的分布式计算问题,这其中最为关注的一个特性就是——CAP理论,也就是所谓的一致性、可用性、分区容错性。集群中最核心解决的问题就是CAP。

CAP综合理解就是我上面写的,多个实例像一个实例一样运行。

所以所谓集群就是把一些数据共享或者同步到不同的实例上,这样系统使用同样的算法,取的结果当然应该是相同啦。所以一些数据库的主从复制,缓存数据集群都是类似这种解决方法。只是代码实现质量和处理规模的问题。

有了这个基础我们再来看看openfire是怎么解决这个问题的。

openfire的集群设计

1、哪些需要进行集群间的同步

对于openfire而言,有这几方面的数据需要进行保证集群间的同步:数据库存的数据、缓存数据、session。貌似就这些吧?

数据库

因为对于openfire来说基本上是透明的,所以这块就交给数据库本身来实现。

缓存数据

缓存是存在内存里的,所以这部分是要同步的

session

session在openfire并不需要所有实例同步,但是需要做用户路由缓存,否则发消息时找不到对应的会话。由此用户路由还是要同步的。

2、缓存的设计

缓存接口

openfire里对缓存的数据容器提供了一个包装接口,这个接口提供了缓存数据的基本方法,用于统一数据操作。

publicinterface Cache extends java.util.Map

如果不开启集群时缓存的默认缓存容器类是:public class DefaultCache ,实际上DefaultCache就是用一个Hashmap来存数据的。

缓存工厂类

为了保证缓存是可以扩展的,提供了一个工厂类:

publicclass CacheFactory

CacheFactory类中会管理所有的缓存容器,如下代码:

/**
   * Returns the named cache, creating it as necessary.
   *
   * @param name     the name of the cache to create.
   * @return the named cache, creating it as necessary.
   */
  @SuppressWarnings("unchecked")
  publicstaticsynchronized  T createCache(String name) {
    T cache = (T) caches.get(name);
    if (cache != null) {
      return cache;
    }
    cache = (T) cacheFactoryStrategy.createCache(name);
    log.info("Created cache [" + cacheFactoryStrategy.getClass().getName() + "] for " + name);
    return wrapCache(cache, name);
  }

上面代码中会通过缓存工厂策略对象来创建一个缓存容器,最后warpCache方法会将此容器放入到caches中。

缓存工厂类的策略

在CacheFactory中默认是使用一个DefaultLocalCacheStrategy来完成缓存创建的。另外还提供了在集群条件下的缓存策略接入。也就是通过实例化不同的策略来切换缓存管理方案。比如后面要提到的hazelcast就是通过这个来替换了本地缓存策略的。从接口的设计上来看,openfire的缓存策略也就是为了集群与非集群的实现。

3、集群的设计

在openfire中的集群主要包括:集群管理、数据同步管理、集群计算任务。

集群管理者

在openfire中主要是一个类来实现:ClusterManager,在ClusterManager中实现了集群实例的加入、退出管理,因为没有使用主从结构,所以ClusterManager实现了一个无中心管理,不知道我理解的对不对。因为只要当前实实例启用了集群,ClusterManager就会主动的加载集群管理并与其他的集群进行同步。

startup

startup是启动集群的方法,代码:

publicstaticsynchronizedvoid startup() {
    if (isClusteringEnabled() && !isClusteringStarted()) {
      initEventDispatcher();
      CacheFactory.startClustering();
    }
  }
 

首先要判断是否开启了集群并且当前集群实例未运行时才去启动。

先是初始化了事件分发器,用于处理集群的同步事情。

然后就是调用CacheFactory的startClustering来运行集群。在startClustering方法中主要是这几个事情:

会使用集群的缓存工厂策略来启动,同时使自己加入到集群中。

开启一个线程用于同步缓存的状态

在前面startup中的initEventDispatcher方法,在这里会注册一个分发线程监听到集群事件,收到事件后会执行joinedCluster或者leftCluster的操作,joinedCluster就是加入到集群中的意思。

在joinedCluster时会将本地的缓存容器都转换为集群缓存。由此便完成了集群的初始化并加入到集群中了。

shutdown

shutdown相对简单点就是退出集群,并且将缓存工厂恢复为本地缓存。

同步管理

上面主要是讲了如何管理集群,接着比较重要的就是如何在集群间同步数据呢?这部分主要是看具体的分布式计算系统的实现了,从openfire来说就是将数据放到集群缓存中,然后通过集群组件来完成的,比如使用hazelcast。

因为使用缓存来解决,所以在CacheFactory中才会有这些么多关于集群的处理代码,特别是对于缓存策略的切换,以及集群任务处理都在CacheFactory作为接口方法向外公开。这样也把集群的实现透明了。

集群计算任务

在这之前一直没有提到集群中的计算问题,因为既然有了集群是不是可以利用集群的优势进行一些并行计算呢?这部分我倒没有太过确定,只是看到相关的代码所以简单列一下。

在CacheFactory类中有几个方法:doClusterTask、doSynchronousClusterTask,这两个都是overload方法,参数有所不同而已。这几个方法就是用于执行一些计算任务的。就看一下doClusterTask:

 public static void doClusterTask(final ClusterTask<&#63;> task) {
    cacheFactoryStrategy.doClusterTask(task);
  }

这里有个限定就是必须是ClusterTask派生的类才行,看看它的定义:

public interface ClusterTask extends Runnable, Externalizable {
  V getResult();
}

主要是为了异步执行和序列化,异步是因为不能阻塞,而序列化当然就是为了能在集群中传送。

再看CacheFactory的doClusterTask方法可以发现,它只不过是代理了缓存策略工厂的doClusterTask,具体的实现还是要看集群实现的。

看一看hazelcast的实现简单理解openfire集群

在openfire中有集群的插件实现,这里就以hazelcast为例子简单的做一下分析与学习。

缓存策略工厂类(ClusteredCacheFactory)

ClusteredCacheFactory实现了CacheFactoryStrategy,代码如下:

publicclass ClusteredCacheFactory implements CacheFactoryStrategy {

首先是startCluster方法用于启动集群,主要完成几件事情:

设置缓存序列化工具类,ClusterExternalizableUtil。这个是用于集群间数据复制时的序列化工具

设置远程session定位器,RemoteSessionLocator,因为session不同步,所以它主要是用于多实例间的session读取

设置远程包路由器ClusterPacketRouter,这样就可以在集群中发送消息了

加载Hazelcast的实例设置NodeID,以及设置ClusterListener

在前面说起集群启动时提到了缓存切换,那具体实现时是如何做的呢?

因为集群启动后就要是CacheFactory.joinedCluster方法来加入集群的。看一下加入的代码:

/**
   * Notification message indicating that this JVM has joined a cluster.
   */
  @SuppressWarnings("unchecked")
  publicstaticsynchronizedvoid joinedCluster() {
    cacheFactoryStrategy = clusteredCacheFactoryStrategy;
    // Loop through local caches and switch them to clustered cache (copy content)for (Cache cache : getAllCaches()) {
      // skip local-only cachesif (localOnly.contains(cache.getName())) continue;
      CacheWrapper cacheWrapper = ((CacheWrapper) cache);
      Cache clusteredCache = cacheFactoryStrategy.createCache(cacheWrapper.getName());
      clusteredCache.putAll(cache);
      cacheWrapper.setWrappedCache(clusteredCache);
    }
    clusteringStarting = false;
    clusteringStarted = true;
    log.info("Clustering started; cache migration complete");
  }

这里可以看到会读取所有的缓存容器并一个个的使用Wrapper包装一下,然后用同样的缓存名称去createCache一个新的Cache,这步使用的是切换后的集群缓存策略工厂,也就是说会使用ClusteredCacheFactory去创建新的缓存容器。最后再将cache写入到新的clusteredCache 里,这样就完成了缓存的切换。

当然这里还是要看一下ClusteredCacheFactory的createCache实现:

public Cache createCache(String name) {
    // Check if cluster is being started upwhile (state == State.starting) {
      // Wait until cluster is fully started (or failed)try {
        Thread.sleep(250);
      }
      catch (InterruptedException e) {
        // Ignore
      }
    }
    if (state == State.stopped) {
      thrownew IllegalStateException("Cannot create clustered cache when not in a cluster");
    }
    returnnew ClusteredCache(name, hazelcast.getMap(name));
  }

这里使用的是ClusteredCache,而且最重要的是传入的第二个map参数换成了hazelcast的了,这样之后再访问这个缓存容器时已经不再是原先的本地Cache了,已经是hazelcast的map对象。hazelcast会自动对map的数据进行同步管理,这也就完成了缓存同步的功能。

集群计算

那就看hazelcast的实现吧,在ClusteredCacheFactory中doClusterTask举个例子吧

publicvoid doClusterTask(final ClusterTask task) {
    if (cluster == null) { return; }
    Set members = new HashSet();
    Member current = cluster.getLocalMember();
    for(Member member : cluster.getMembers()) {
      if (!member.getUuid().equals(current.getUuid())) {
        members.add(member);
      }
    }
    if (members.size() > 0) {
      // Asynchronously execute the task on the other cluster members
      logger.debug("Executing asynchronous MultiTask: " + task.getClass().getName());
      hazelcast.getExecutorService(HAZELCAST_EXECUTOR_SERVICE_NAME).submitToMembers(
        new CallableTask(task), members);
    } else {
        logger.warn("No cluster members selected for cluster task " + task.getClass().getName());
    }
  }

过程就是,先获取到集群中的实例成员,当然要排除自己。然后hazelcast提供了ExecutorService来执行这个task,方法就是submiteToMembers。这样就提交了一个运算任务。只不过具体是如何分配计算并汇集结果倒真不太清楚。

总结

花了一天时间看了一下openfire的集群,顺手就写了一篇文章,确实也到了一些东西。和一些网友沟通中好像目前大家更愿意使用redies来完成缓存共享,以及通过代理来实现集群,而不愿意使用openfire的集群方案。这部分我没有遇到如何大的并发量需求确实不知道区别在哪里。以后有机会还是动手试试写一个redies的插件。


推荐阅读
  • 远程过程调用(RPC)是一种允许客户端通过网络请求服务器执行特定功能的技术。它简化了分布式系统的交互,使开发者可以像调用本地函数一样调用远程服务,并获得返回结果。本文将深入探讨RPC的工作原理、发展历程及其在现代技术中的应用。 ... [详细]
  • 深入理解一致性哈希算法及其应用
    本文详细介绍了分布式系统中的一致性哈希算法,探讨其原理、优势及应用场景,帮助读者全面掌握这一关键技术。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 网络运维工程师负责确保企业IT基础设施的稳定运行,保障业务连续性和数据安全。他们需要具备多种技能,包括搭建和维护网络环境、监控系统性能、处理突发事件等。本文将探讨网络运维工程师的职业前景及其平均薪酬水平。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 探讨如何真正掌握Java EE,包括所需技能、工具和实践经验。资深软件教学总监李刚分享了对毕业生简历中常见问题的看法,并提供了详尽的标准。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • 本文探讨了Java编程的核心要素,特别是其面向对象的特性,并详细介绍了Java虚拟机、类装载器体系结构、Java类文件和Java API等关键技术。这些技术使得Java成为一种功能强大且易于使用的编程语言。 ... [详细]
  • ZooKeeper集群脑裂问题及其解决方案
    本文深入探讨了ZooKeeper集群中可能出现的脑裂问题,分析其成因,并提供了多种有效的解决方案,确保集群在高可用性环境下的稳定运行。 ... [详细]
  • 深入解析Serverless架构模式
    本文将详细介绍Serverless架构模式的核心概念、工作原理及其优势。通过对比传统架构,探讨Serverless如何简化应用开发与运维流程,并介绍当前主流的Serverless平台。 ... [详细]
author-avatar
没有结局的梦z最痛
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有