热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

关于利用FFT分析时域信号幅相的思考与验证

引言 利用FFT分析/估计时域信号的幅度和相位,属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍,信号的幅相估计都是最准





引言

利用FFT分析/估计时域信号的幅度和相位,属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍,信号的幅相估计都是最准确的。一旦目标频率不等于频率分辨率的整数倍,幅度估计值将会降低,相位估计值会偏差很大。

下面会通过一些仿真来验证。

单点频实信号估计

信号幅值:10

信号相位:45°

信号频率:100Hz

信号类型:实信号

采样率:1000Hz

采样点数:100

频率分辨率:10Hz


信号频率等于分辨率整数倍

MATLAB代码:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=-pi/8;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 注意,此处分析的双边谱,所以每边高度为 10/2 = 5;

相位估计很准确,是45°相位。


信号频率不等于分辨率整数倍

如果改变采样点数(改为128),使得频率分辨率变化,不等于分辨率的整数倍,则:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
N=128;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,发现频率、幅度估值有微小偏差,相位的估计值几乎不可信


信号频率等于分辨率整数倍,加噪声

考虑噪声影响:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 2*randn(1,N);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,信号的频率估计准确,但是幅度和相位的估计存在微小误差。


多点频实信号估计

信号的频点均位于频率分辨率整数倍的位置:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*cos(2*pi*f0*t+p0) + 4*cos(2*pi*f1*t+p1);
figure;
subplot(311)
plot(s)
title('时域波形');xlabel('采样点数');ylabel('采样幅度')subplot(312)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(313)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

对于多点频信号,只要信号频点均位于分辨率整数倍的位置,其估值都十分准确。


多点频复信号估计

下面再试验一下复信号:

clc;
clearvars;
close all;fs=10e2;
f0=1e2;
p0=pi/4;
f1=2e2;
p1=pi/2;
N=100;
t=(0:N-1)/fs;
s=10*exp(1j*(2*pi*f0*t+p0)) + 4*exp(1j*(2*pi*f1*t+p1));
figure;
subplot(411)
plot(real(s))
title('时域波形(实部)');xlabel('采样点数');ylabel('采样幅度')subplot(412)
plot(imag(s))
title('时域波形(虚部)');xlabel('采样点数');ylabel('采样幅度')subplot(413)
plot((linspace(-fs/2,fs/2-fs/N,N)),abs(fftshift(fft(s)))/N)
title('幅度谱');xlabel('频率/Hz');ylabel('幅度')subplot(414)
plot((linspace(-fs/2,fs/2-fs/N,N)),angle(fftshift(fft(s)))/pi*180)
title('相位谱');xlabel('频率/Hz');ylabel('相位/°')

 根据仿真结果,可以看出,复信号同样满足上述结论,即信号频率位于分辨率整数倍位置时,用FFT可以精确估计其频率和相位。


结论

结尾处再次说明一下:

不论是是信号还是复信号:

  1. 不加噪声时,位于分辨率整数倍处的信号频率、相位均可以被精确估算;
  2. 不加噪声时,不位于分辨率整数倍处的信号频率的估计存在微小误差、相位估计值基本不可信;
  3. 加噪声时,位于分辨率整数倍处的信号频率可以被精确估算,相位估算存在微小偏差;

可以结合代码和仿真进行理解,如有疑问,评论区留言吧~~


推荐阅读
  • 本文详细介绍了如何在PyQt5中创建简易对话框,包括对话框的基本结构、布局管理以及源代码实现。通过实例代码,展示了如何设置窗口部件、布局方式及对话框的基本操作。 ... [详细]
  • 汇编语言标识符和表达式(四)(表达式与符号定义语句)
    7、表达式表达式是程序设计课程里的一个重要的基本概念,它可由运算符、操作符、括号、常量和一些符号连在一起的式子。在汇编语言中,表达式分为:数值表达式和地址表达式。(1)进制伪指令R ... [详细]
  • td{border:1pxsolid#808080;}参考:和FMX相关的类(表)TFmxObjectIFreeNotification ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • 本文详细介绍了如何在Oracle VM VirtualBox中实现主机与虚拟机之间的数据交换,包括安装Guest Additions增强功能,以及如何利用这些功能进行文件传输、屏幕调整等操作。 ... [详细]
  • 本文详细介绍了 `org.apache.tinkerpop.gremlin.structure.VertexProperty` 类中的 `key()` 方法,并提供了多个实际应用的代码示例。通过这些示例,读者可以更好地理解该方法在图数据库操作中的具体用途。 ... [详细]
  • 本文介绍了SELinux的两种主要工作模式——强制模式和宽容模式,并提供了如何在CentOS 7中正确启用和配置SELinux的方法,以及在遇到登录问题时的解决策略。 ... [详细]
  • 问题场景用Java进行web开发过程当中,当遇到很多很多个字段的实体时,最苦恼的莫过于编辑字段的查看和修改界面,发现2个页面存在很多重复信息,能不能写一遍?有没有轮子用都不如自己造。解决方式笔者根据自 ... [详细]
  • 本笔记为自用,倘若没有相关的学习基础,也确实无法看懂文章写的是什么。近来有点越学越回去的感觉。竟然突然在想,为什么深度学习模型可以对图像进行分类或者语义分割。可怕的是,当时想到这里 ... [详细]
  • Android与JUnit集成测试实践
    本文探讨了如何在Android项目中集成JUnit进行单元测试,并详细介绍了修改AndroidManifest.xml文件以支持测试的方法。 ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文介绍了如何利用Python中的Matplotlib库来绘制三维点云数据,并展示其外接的最大边界框。通过具体代码示例,帮助读者理解点云数据的可视化方法。 ... [详细]
  • 本文介绍了一种在ZC公司的员工评估系统中,如何根据动态设置的评分指标,在后台查询时动态生成并显示数据表的方法。该方法确保了评分指标与被评人员信息的有效整合。 ... [详细]
  • 本文介绍了一个使用Slideview组件实现循环轮播效果的例子,并将其作为ListView顶部的一项。此ListView包含了两种不同的模板设计,一种以Slideview为核心,另一种则是标准的单元格模板,包含按钮和标签。 ... [详细]
author-avatar
吴小熙1108
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有