热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

更快的数据处理不再是一种奢侈---边缘计算_JITStack

云计算不再足以即时处理和分析物联网设备、联网汽车和其他数字平台生成(或即将生成)的海量数据。例如,拥有自动驾驶的车辆本质上是车轮上的高性能

云计算不再足以即时处理和分析物联网设备、联网汽车和其他数字平台生成(或即将生成)的海量数据。例如,拥有自动驾驶的车辆本质上是车轮上的高性能计算机,其通过多个传感器收集数据。为了使这些车辆安全可靠地运行,他们需要立即响应周围环境。处理速度的任何滞后都可能是致命的。

虽然连接设备的大部分数据处理现在都在云中进行,但是在中央服务器上来回发送数据可能需要几秒钟的时间。到2020年,估计智能驾驶汽车每天将产生1.5 GB的数据。随着更多设备连接到互联网并生成数据,云计算可能无法全部处理——特别是在某些需要更快响应速度的用途。

边缘计算可以为自动驾驶汽车提供更快的数据处理,但它是如何工作的?

边缘计算使连接的设备能够处理更靠近创建位置的数据——或者“边缘”。这可以是在设备本身(即传感器)内,也可以是在设备附近,提供了一种将数据发送到集中云进行处理的替代方案。包括亚马逊(Amazon)、微软(Microsoft)和谷歌在内的一些最大的科技公司正在探索边缘计算,这可能会引发下一场大型计算竞赛。
更快的数据处理不再是一种奢侈---边缘计算_JITStack

向边缘计算的转变

在我们这个数据密集型的未来,随着数十亿设备接入互联网,更快、更可靠的数据处理将变得至关重要。近年来,事实证明,云计算的整合和集中特性具有成本效益和灵活性,但物联网和移动计算的兴起对网络带宽造成了压力。

最终,并不是所有的智能设备都需要使用云计算来运行。在某些情况下,可以而且应该避免这种反复的数据传输。这就是边缘计算的用武之地。根据CB Insights市场规模评估,到2022年,全球边缘计算市场预计将达到67.2亿美元。

虽然是一个新兴领域,但在云计算运作的某些领域中,边缘计算可能会更有效率。边缘计算使数据处理更接近其创建的位置(例如,电机、泵、发电机或其他传感器),从而减少了在云之间来回传输数据的需要。
更快的数据处理不再是一种奢侈---边缘计算_JITStack
据研究公司IDC 称,边缘计算被描述为“ 由微型数据中心组成的网状网络,可在本地处理或存储关键数据,并将所有接收的数据推送到中央数据中心或云存储库,占地面积小于100平方英尺 ”。

例如,列车可能包含可立即提供其发动机状态的传感器。在这种情况下,无论是运行数据在火车上还是在云中,传感器数据都不需要前往数据中心,就可以查看是否有东西影响了发送机运转。
更快的数据处理不再是一种奢侈---边缘计算_JITStack
例如,列车可能包含可立即提供其发动机状态的传感器。在这种情况下,无论是运行数据在火车上还
对数据处理和存储进行本地化可以减轻计算网络的负担。当发送到云的数据更少时,延迟的可能性(云与物联网设备交互导致的数据处理延迟)就会降低。这也对硬件底层边缘计算技术承担更多责任,该技术包括用于收集数据的传感器和用于处理连接设备内的数据的CPU或GPU。

智能制造业为什么看好边缘计算

智能制造可以从现代工厂中使用的大量传感器中获得启发。减少边缘计算的延迟问题可以使制造工作流中更快、更灵敏的更改,从而能够实时应用洞察力和操作。这可能包括在机器过热之前关闭它。工厂可以使用两个机器人,配备传感器并连接到边缘设备,以执行相同的任务。边缘设备可以运行机器学习模型来预测其中一个机器人是否会发生故障(如图所示)。
更快的数据处理不再是一种奢侈---边缘计算_JITStack
如果该边缘设备确定机器人可能发生故障,则会触发一个动作来停止或减慢它。这将允许工厂实时评估潜在的故障。如果机器人可以自己处理数据,它们可能会变得更加自给自足和反应灵敏。边缘计算应该允许从大数据生成更大,更快的洞察力,并且可以将更多的机器学习应用于操作。

最终目标是利用正在创建的大量数据的未开发价值,预防安全危害,并减少工厂车间的中断。 从可穿戴设备到智慧工厂,再到智能驾驶,物联网设备的发展越来越广阔。边缘计算可以提供另一种高效的解决方案,围绕着设备功能开发能够处理软件和硬件能力,打破了集中式云数据中心数据管理、处理和存储传统架构的局限性。


推荐阅读
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • Valve 发布 Steam Deck 的新版 Windows 驱动程序
    Valve 最新发布了针对 Steam Deck 掌机的 Windows 驱动程序,旨在提升其在 Windows 环境下的兼容性、安全性和性能表现。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 使用亚马逊免费服务部署Discuz!论坛指南(第一部分)
    本文将指导您如何利用亚马逊AWS提供的12个月免费试用服务来部署Discuz!论坛。仅需一张信用卡即可轻松注册并开始使用。文章将详细介绍从账号注册到实例创建的具体步骤。 ... [详细]
  • 混合云架构在本地与云服务间寻求平衡的有效性探讨
    随着云计算技术的发展,混合多云架构因其灵活性和高效性而备受关注。本文将深入探讨混合多云(简称混合云)如何通过结合本地基础设施与云端资源,为企业提供一个更为平衡且高效的IT解决方案。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 地理信息、定位技术及其在物联网中的应用
    地理位置信息是物联网系统中不可或缺的关键要素,它不仅提供了物理世界的坐标,还增强了物联网应用的实用性和准确性。本文探讨了位置服务的基本概念、关键技术及其在物联网中的重要作用,特别介绍了定位技术的最新进展。 ... [详细]
  • 远程访问用户 Kindle通过电子书实现控制
    介绍自2007年以来,亚马逊已售出数千万台Kindle,令人印象深刻。但这也意味着数以千万计的人可能会因为这些Kindle中的软件漏洞而被黑客入侵。他 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
  • 七大策略降低云上MySQL成本
    在全球经济放缓和通胀压力下,降低云环境中MySQL数据库的运行成本成为企业关注的重点。本文提供了一系列实用技巧,旨在帮助企业有效控制成本,同时保持高效运作。 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 在拉斯维加斯举行的Interop 2011大会上,Bitcurrent的Alistair Croll发表了一场主题为“如何以云计算的视角进行思考”的演讲。该演讲深入探讨了传统IT思维与云计算思维之间的差异,并提出了在云计算环境下应具备的新思维方式。Croll强调了灵活性、可扩展性和成本效益等关键要素,以及如何通过这些要素来优化企业IT架构和运营。 ... [详细]
  • 本文详细介绍了IBM DB2数据库在大型应用系统中的应用,强调其卓越的可扩展性和多环境支持能力。文章深入分析了DB2在数据利用性、完整性、安全性和恢复性方面的优势,并提供了优化建议以提升其在不同规模应用程序中的表现。 ... [详细]
  • 《计算机视觉:算法与应用》第二版初稿上线,全面更新迎接未来
    经典计算机视觉教材《计算机视觉:算法与应用》迎来了其第二版,现已开放初稿下载。本书由Facebook研究科学家Richard Szeliski撰写,自2010年首版以来,一直是该领域的标准参考书。 ... [详细]
author-avatar
用户r7t3govjq0
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有