作者:大师兄v断水流 | 来源:互联网 | 2023-07-10 15:34
大白话高斯模糊
以二维高斯为例,公式:
高斯模糊的原理,可以理解成每一个像素都取周边像素的加权平均值
以高斯分布取g矩阵的值得到的模糊方法即为高斯模糊
权重矩阵
假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:
更远的点以此类推。
为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:
这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵
计算高斯模糊
有了权重矩阵,就可以计算高斯模糊的值了。
假设现有9个像素点,灰度值(0-255)如下:
每个点乘以自己的权重值(高斯核函数关于中心对称,所以直接对应相乘与旋转180°相乘效果一样):
得到
将这9个值加起来,就是中心点的高斯模糊的值。
对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。
参考:https://blog.csdn.net/weixin_39124778/article/details/78411314