热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

干货!机器学习平台优质学习资源推荐

机器学习平台在人工智能的开发过程中扮演者非常重要的作用,所以,这些年来,也出现了很多不同的机器学习平台,侧重传统方法的scipy、sklearn,侧重深度学习的caffe、then

机器学习平台在人工智能的开发过程中扮演者非常重要的作用,所以,这些年来,也出现了很多不同的机器学习平台,侧重传统方法的scipy、sklearn,侧重深度学习的caffe、theno、pytorch、tensorflow、mxnet,还有高度集成的gluon、keras,都在人工智能工作中扮演者重要的角色,今天我就推荐一些这两年表现比较突出的三个机器学习平台的相关学习资源,分别是tensorflow、pytorch、mxnet。

备注:我已经整理了相关文档的pdf和epub版,需要的可以私信。

目录

  • 为什么需要机器学习平台?
  • 该选择哪个机器学习平台?
  • 有哪些优质学习资源?

为什么需要机器学习平台?

我们做计算机视觉或自然语言,懂算法、自己会开发不就行了,为什么还需要学习这些机器学习平台的使用?原因有几个:

  1. 节省时间
  2. 精度高

首先说一下节省时间,比如做计算机视觉过程中,我们搭一个YOLO模型,里面涉及矩阵运算、卷积运算、梯度传播、池化、dropout、激活函数、dataloader、优化算法等等,如果把这些模块都自己重新开发一边,必然会耗费很多时间,而这些模块又是相对成熟稳定的,我们大可不必在这上面耗费时间,而应该把时间用在模型的调优、场景的适配等方面,有了机器学习平台,一行命令就能解决我们用C/C++写一上午甚至更长时间的工作。

其次是精度高,有很多算法虽然流程相同,但是不同的人实现的效果却不同,例如Adam、RMSProp等,这些算法计算速度和精度由不同的人实现效果可能会有天差之别,而这些机器学习平台是Google、Facebook、亚马逊这些人工智能顶尖的企业花大力气验证和优化的,所以效率自然不在话下。

该选择哪个机器学习平台?

机器学习平台有很多,tensorflow、pytorch、mxnet、caffe、sklearn、theno、keras,我个人推荐在tensorflow、pytorch、mxnet三个里面进行选择,因为这三个平台有以下几个优点。

  1. 灵活、方便推理
  2. 安装配置容易
  3. 强大的社区支持

那tensorflow、pytorch、mxnet又怎么选择呢?我简单介绍一下这几个机器学习平台的优缺点,大家可以根据自己的判断自行选择。

tensorflow

tensorflow是一个基于计算图和会话的深度学习平台,tensorflow给我的感觉就是一个庞然大物,这几年随着Google不断的调整和往里面加功能,这个平台变得非常大,里面含有keras模块,slim模块,还有eager模式,tensorflow的优点有:

  1. 基于符号式编程,速度快。
  2. 功能丰富,既有灵活的搭建,又有keras、slim这些简洁、集成度高的模块。
  3. 可视化好,有tensorboard这个可视化工具支撑,能够让我们更加清楚搭建的网络架构、数据流向。
  4. 强大的社区支持,由于tensorflow用户多,所以当遇到问题的时候会相对容易找到解决方案。

当然tensorflow也有缺点,我觉得正是因为太庞大了,所以有很多功能非常混乱,基于计算图和会话搭建会很不方便。

pytorch

pytorch自从诞生之后就迅速的成为了宠儿,因为它的出现解决了很多以往深度学习平台的痛点:

  1. 命令式编程,实现简单。
  2. 数据加载API设计的好,使用方便。
  3. 上手简单,仅凭这一点就已经很吸引人了。
  4. 自定义扩展。

mxnet

这是一款有亚马逊推出的深度学习平台,最近看《动手学深度学习》时顺便把mxnet学了一遍,mxnet主要有以下几个优点:

  1. 同时支持符号式编程和命令式编程,既有tensorflow的快速又有pytorch的简单。
  2. 支持多GPU和多机分布式。
  3. 有丰富的与训练模型。

有哪些优质学习资源?

上Google搜一下,会发现有很多各式各样的课程和学习资源,可谓是天花乱坠,我一直秉持一个理念“资源不再多,挑选少数有价值的好好学一下比把所有的都学一遍要有效果”,下面我就针对性的推荐一下我认为比较好的几个资源。

《干货!机器学习平台优质学习资源推荐》

tensorflow

  • tensorflow官方文档

首推当然是官方文档,官方的才是最靠谱,最了解内部详情的,官方文档比较简洁,提供了MNIST、卷积神经网络、可视化等常用的场景,而且在卷积神经网络中以cifar-10为例几乎涵盖了tensorflow常用的功能和计算图搭建流程,详细把这份文档看完基本就掌握了tensorflow的使用。

TensorFlow 官方文档中文版www.tensorfly.cn

我已经整理好官方文档pdf版,需要的可以私信。

  • tensorflow_course

如果觉得官方文档不能够让你变成tensorflow熟手,那就试着用tensorflow完成几个机器学习算法的搭建,tensorflow_course是一个github资源,目前已经9.5k个star,受欢迎程度可见一斑,上面有传统算法,例如线性回归、支持向量机,也有深度学习算法,例如卷积神经网络,能够让你在学习机器学习的过程中进一步熟练tensorflow。

osforscience/TensorFlow-Coursegithub.com《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》

  • tensorflow_cookbook

这也是一个github项目资源,虽然不如上面这个火热,但是目前也拥有4.1k个star,和上面这个资源有些类似之处,包括传统算法和深度学习算法的实现,可以边学习机器学习知识、边学习深度学习平台。

nfmcclure/tensorflow_cookbookgithub.com《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》

  • 其他资源

还有一些tensorflow的系列教程,包括斯坦福的tensorflow教程,我列在下面,需要的可以自行看一下。

chiphuyen/stanford-tensorflow-tutorialsgithub.com《干货!机器学习平台优质学习资源推荐》
pkmital/tensorflow_tutorialsgithub.com《干货!机器学习平台优质学习资源推荐》
Hvass-Labs/TensorFlow-Tutorialsgithub.com《干货!机器学习平台优质学习资源推荐》

上面这三个资源也很不错,只是内容太多,我个人推荐好好看完前面三个资源就差不多了,可以在后期项目中慢慢熟练。

《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》

Pytorch

  • pytorch官方文档

首先推荐的当然还是官方的文档,前面已经说过,官方文档是最了解自己工具的,也知道哪些该用,哪些需要学习,所以官方文档简洁、节省时间。

主页 – PyTorch中文文档pytorch-cn.readthedocs.io

  • pytorch_list

如果觉得官方文档内容不够,可以看一下这个github资源,目前5.4k个star,这个资源可以称得上是大合集,包括计算机视觉、自然语言处理、教程和示例、优秀文章的实现,非常全面。

bharathgs/Awesome-pytorch-listgithub.com《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》

mxnet

关于mxnet学习资源我只推荐一个,就是李沐的《动手学深度学习》,原因很简单,原作者出品的,质量必然值得信赖,而且这个课程以深度学习学习为目标,会讲解优化算法、卷积神经网络、自然语言处理等,在实现过程中会使用mxnet和gluon,会涉及到mxnet底层函数的实现,也会涉及到集成函数的使用,在学习过程中不知不觉就上手了。

《动手学深度学习》:面向中文读者、能运行、可讨论zh.gluon.ai《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》
《干货!机器学习平台优质学习资源推荐》

我已经把官方文档PDF版和epub版放进共享文件夹,需要的可以关注公众号【平凡而诗意】,回复关键字“doc”获取。

更多我的作品

Jackpop:机器学习入门指导

Jackpop:有哪些堪称「神器」,却鲜为人知的APP?

Jackpop:Windows 下有什么用过之后就离不开的冷门软件?

Jackpop:初学 Python 需要安装哪些软件?


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • Docker的安全基准
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 程序员如何优雅应对35岁职业转型?这里有深度解析
    本文探讨了程序员在职业生涯中如何通过不断学习和技能提升,优雅地应对35岁左右的职业转型挑战。我们将深入分析当前热门技术趋势,并提供实用的学习路径。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 优化后的摘要:本文详细分析了当前面临的挑战和机遇,结合具体实例探讨了如何通过创新和改革来推动长期可持续发展。文中还介绍了多种可行的解决方案,并强调了在不同阶段实施这些方案的重要性。 ... [详细]
  • 由中科院自动化所、中科院大学及南昌大学联合研究提出了一种新颖的双路径生成对抗网络(TP-GAN),该技术能通过单一侧面照片生成逼真的正面人脸图像,显著提升了不同姿态下的人脸识别效果。 ... [详细]
  • 字节跳动夏季招聘面试经验分享
    本文详细记录了字节跳动夏季招聘的面试经历,涵盖了一、二、三轮面试的技术问题及项目讨论,旨在为准备类似面试的求职者提供参考。 ... [详细]
  • 新手指南:在Windows 10上搭建深度学习与PyTorch开发环境
    本文详细记录了一名新手在Windows 10操作系统上搭建深度学习环境的过程,包括安装必要的软件和配置环境变量等步骤,旨在帮助同样初入该领域的读者避免常见的错误。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
author-avatar
我爱我19930515
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有