热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

概率论与数理统计基本概念

基本概念随机实验随机实验可以简称为实验,它满足以下的条件:可以在相同条件下重复进行每次实验的结果不止一个,且实验前明确进行实验之前不

基本概念


随机实验

随机实验可以简称为实验,它满足以下的条件:


  • 可以在相同条件下重复进行
  • 每次实验的结果不止一个,且实验前明确
  • 进行实验之前不明确那个结果会发生

样本空间

样本空间就是随机实验可能的结果的集合
每一个可能的结果称为样本点
例如:


  • 扔色子的样本空间S = {1,2,3,4,5,6}
  • 灯泡的寿命S = {t | t >= 0}

事件

事件就是发生的某种情况,可以用一个集合来表示,这个集合必然是样本空间的子集。
当事件结果的集合中对应元素出现时,则称为事件发生


  1. 随机事件

随机事件就是要研究的事件,所有其他的事件都被属于随机事件
例如之前的扔色子,可以有一个点数为偶数的随机事件,
用集合来表示就是S = {2,4,6}



  1. 基本事件

基本事件就是指单个样本点组成的集合。还是用色子来举例,点数为1就是一个基本事件,对应的集合为S = {1}



  1. 必然事件

包含所有样本点的事件,也就是必然事件的集合和样本空间相同



  1. 不可能事件

不可能事件不包含任何样本点,用空集表示



  1. 完备事件组
    当多个事件之间两两没有交集,并且他们的并集为样本空间,则这些事件组成一个完备事件组,或者叫做 “划分”

在这里插入图片描述


事件运算


随机事件的关系


  1. 包含

在这里插入图片描述



  1. 相等

在这里插入图片描述



  1. 和事件,跟编程中的或运算相同

在这里插入图片描述



  1. 积事件,与编程中的与运算符相同

在这里插入图片描述因为是积事件,可以直接写作乘积的形式



  1. 减法关系

在这里插入图片描述
去除事件A中事件B的包含部分



  1. 无关(互斥)

在这里插入图片描述



  1. 对立

在这里插入图片描述



运算律

在这里插入图片描述


频率与概率

概率是一件事发生的可能性大小的数字衡量。


事件A在n次实验中发生了m次,则事件的概率为P(A)=mnP(A) = \frac mnP(A)=nm


频率是一次实验中得到的结果,概率的频率定义为:


随着实验次数的增加,频率会在某个数值附近波动,这个数值被称为概率



概率的性质


  • 对于任何一个事件,概率都在0-1之间
  • 不然事件的概率为1,不可能事件的概率为0
  • 有限可加性在这里插入图片描述
  • 包含可减性在这里插入图片描述
  • 对任意一个事件A,它的对立事件A‾\overline{A}A的概率为P(A‾)=1−P(A)P(\overline{A})=1 - P(A)P(A)=1P(A)
  • 减法公式:对于任意的两个事件A、B,有P(B−A)=P(B)−P(AB)P(B-A) = P(B) - P(AB)P(BA)=P(B)P(AB)
  • 加法公式:对于任意的两个事件A、B,有P(A+B)=P(A)+P(B)−P(AB)P(A+B) = P(A) + P(B) - P(AB)P(A+B)=P(A)+P(B)P(AB)

古典概型和几何概型

古典概型基本事件的个数为有限个,并且每个基本事件的可能性都相同。
在这里插入图片描述
几何概型有无限的样本点,每个样本点出现的可能性相等。
比如时间,长度,面积这一类的问题。


条件概率和乘法公式

计算公式
在这里插入图片描述

性质
在这里插入图片描述
乘法公式
在这里插入图片描述


推荐阅读
  • 本文探讨了在 PHP 的 Zend 框架下,使用 PHPUnit 进行单元测试时遇到的 Zend_Controller_Response_Exception 错误,并提供了解决方案。 ... [详细]
  • Python Selenium WebDriver 浏览器驱动详解与实践
    本文详细介绍了如何使用Python结合Selenium和unittest构建自动化测试框架,重点解析了WebDriver浏览器驱动的配置与使用方法,涵盖Chrome、Firefox、IE/Edge等主流浏览器。 ... [详细]
  • 本文探讨了在不同场景下如何高效且安全地存储Token,包括使用定时器刷新、数据库存储等方法,并针对个人开发者与第三方服务平台的不同需求提供了具体建议。 ... [详细]
  • 本文探讨了如何在Angular项目中处理URL重写时遇到的参数缺失问题,并提供了一种有效的解决方案。 ... [详细]
  • Unity技巧:实现背景音乐的开关功能
    本文详细介绍了如何在Unity中通过脚本控制背景音乐的开启与关闭,适合初学者参考。 ... [详细]
  • 本文探讨了一个Web工程项目的需求,即允许用户随时添加定时任务,并通过Quartz框架实现这些任务的自动化调度。文章将介绍如何设计任务表以存储任务信息和执行周期,以及如何通过一个定期扫描机制自动识别并加载新任务到调度系统中。 ... [详细]
  • 本文介绍了如何通过设置特定属性来取消小程序中 Navigator 组件的默认点击效果,提高用户体验。 ... [详细]
  • 本文详细介绍了在MyBatis框架中如何通过#和$两种方式来传递SQL查询参数。使用#方式可以提高执行效率,而使用$则有助于在复杂SQL语句中更好地查看日志。此外,文章还探讨了不同场景下的参数传递方法,包括实体对象、基本数据类型以及混合参数的使用。 ... [详细]
  • 本文介绍了如何使用Java编程语言实现凯撒密码的加密与解密功能。凯撒密码是一种替换式密码,通过将字母表中的每个字母向前或向后移动固定数量的位置来实现加密。 ... [详细]
  • java datarow_DataSet  DataTable DataRow 深入浅出
    本篇文章适合有一定的基础的人去查看,最好学习过一定net编程基础在来查看此文章。1.概念DataSet是ADO.NET的中心概念。可以把DataSet当成内存中的数据 ... [详细]
  • 本文详细探讨了编程中的命名空间与作用域概念,包括其定义、类型以及在不同上下文中的应用。 ... [详细]
  • Web开发实践:创建连连看小游戏
    本文详细介绍了如何在Web环境中开发一款连连看小游戏,适合初学者和技术爱好者参考。通过本文,您将了解游戏的基本结构、连线算法以及实现方法。 ... [详细]
  • Java中List的forEach方法与字符串拼接的兼容性问题
    本文深入探讨了在Java中使用List的forEach方法时遇到的字符串拼接问题,提供了有效的解决方案及背后的原理分析,旨在帮助开发者更好地理解和解决此类问题。 ... [详细]
  • 本文探讨了在Eclipse中进行JavaScript验证时遇到的时间过长问题,并提供了解决方法。特别是对于使用ExtJS框架的用户,这一问题尤为突出。文章详细介绍了如何通过修改项目配置文件来有效解决这一问题。 ... [详细]
  • 宝塔面板下启用HTTPS的详细指南
    本文提供了在宝塔面板环境中配置HTTPS的具体步骤,确保您的网站通信更加安全可靠。 ... [详细]
author-avatar
巡山小妖
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有