热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Flink1.10和Hive3.0性能对比

如今的大数据批计算,随着Hive数仓的成熟,普遍的模式是Hivemetastore计算引擎。常见的计算引擎有HiveonMapReduce、Hiveon

如今的大数据批计算,随着 Hive 数仓的成熟,普遍的模式是 Hive metastore + 计算引擎。常见的计算引擎有 Hive on MapReduce、Hive on Tez、Hive on Spark、Spark integrate Hive、Presto integrate Hive,还有随着 Flink 1.10 发布后生产可用的 Flink Batch SQL。

Flink 作为一个统一的计算引擎,旨在提供统一的流批体验以及技术栈。Flink 在 1.9 合并了 Blink 的代码,并在 1.10 中完善了大量的功能以及性能,可以运行所有 TPC-DS 的查询,性能方面也很有竞争力,Flink 1.10 是一个生产可用的、批流统一的 SQL 引擎版本。

在搭建计算平台的过程中,性能和成本是选取计算引擎的很关键的因素。为此,Ververica 的 flink-sql-benchmark [1] 项目提供了基于 Hive Metastore 的 TPC-DS Benchmark 测试的工具,为了测试更靠近真正的生产作业:

  • 测试的输入表都是标准的 Hive 表,数据全在与生产一致的 Hive 数仓中。其它计算引擎也能方便分析这些表。
  • 数据的格式采用 ORC,ORC 是常用的生产文件格式,提供较高的压缩率,和较好的读取性能。
  • 选取 TPC-DS Benchmark 的 10TB 数据集,10TB 的数据集是比较常见的生产规模。如果只有 1TB,完全可以在传统数据库中运行起来,不太适合大数据的测试。

我们在 20 台机器上测试了三种引擎:Flink 1.10、Hive 3.0 on MapReduce、Hive 3.0 on Tez,从两个维度测试了引擎的成绩:

  • 总时长:直观的性能数据,但是可能会受到个别 queries 的较大影响。
  • 几何平均:表示一组数的中心趋势,它可以更好的消除个别 queries 的较大影响,呈现较真实的平均数。

结果摘要:

  • Flink 1.10 VS Hive 3.0 on MapReduce

    • Flink 总时长的性能是 Hive on MapReduce 的 8.7 倍。
    • Flink Queries 几何平均的性能是 Hive on MapReduce 的 7.8 倍。
  • Flink 1.10 VS Hive 3.0 on Tez

    • Flink 总时长的性能是 Hive on Tez 的 2.1 倍。
    • Flink Queries 几何平均的性能是 Hive on Tez 的 2.0 倍。

运行总时间的对比成绩是:

Queries 几何平均的对比成绩是:

本文只测试了上述引擎和 10TB 的数据集,读者可以根据自己的集群规模,选取特定的数据集,使用 flink-sql-benchmark 工具来运行更多引擎的对比测试。

Benchmark 详情


Benchmark 环境

具体环境及调优说明:

  • 计算环境:20 台机器,机器参数为 64 核 intel 处理器、256GB 内存、1 SSD 盘用于计算引擎、多块 SATA 盘用于 HDFS、万兆网卡。
  • 集群环境:Yarn + HDFS + Hive。
  • Flink参数:flink-conf.yaml [2]。
  • Hive参数:主要调优了 MapJoin 的阈值,提高性能的同时避免 OOM。
  • 选用较新的 Hadoop 版本(3.X),并选用了较新的 Hive 和 Tez 版本

Benchmark 步骤

环境准备

  1. 准备 Hadoop (HDFS + YARN) 环境
  2. 准备 Hive 环境

■ 数据集生成

  1. 分布式生成 TPC-DS 数据集,并加载 TEXT 数据集到 Hive,原始数据是 Csv 的格式。建议分布式生成数据,这也是个比较耗时的步骤。(flink-sql-benmark 工具中集成了 TPC-DS 的工具)
  2. Hive TEXT 表转换为 ORC 表,ORC 格式是常见的 Hive 数据文件格式,行列混合的存储有利于后续的快速分析,也有很高的压缩比。执行 Query:create table ${NAME} stored as ${FILE} as select * from SOURCE.{SOURCE}.SOURCE.{NAME};

如图,生成了 TPC-DS 官方说明的 7 张事实表和 17 张维表。

  1. 分析 Hive 表,统计信息对于分析作业的查询优化非常重要,对于复杂的 SQL,Plan 的执行效率有很大的差异。Flink 不但支持读取 Hive 的 Table 统计信息,也支持读取 Hive 的分区统计信息,根据统计信息进行 CBO 的优化。执行命令:analyze table ${NAME} compute statistics for columns;

Flink 运行 Queries

  1. 准备 Flink 环境,搭建 Flink Yarn Session 环境,推荐使用 Standalone 或者 Session 模式,可以复用 Flink 的进程,加快分析型作业的速度。
  2. 编写代码运行 Queries,统计执行时间等相关信息,具体代码可以直接复用 flink-sql-benchmark 里的 flink-tpcds 工程。
  3. FLINK_HOME/flink run 运行程序,执行所有 queries,等待执行完毕,统计执行时间。

其它引擎运行 Queries

  1. 根据其它引擎的官网提示,搭建环境。
  2. 得益于标准的 Hive 数据集,可以方便的使用其它引擎来读取 Hive 数据。
  3. 在运行时,值得注意的是需要达到集群的瓶颈,比如 Cpu、比如 Disk,一定是有瓶颈出现,才能证明运行方式和参数是比较合理的,为此,需要一些性能调优。

Benchmark 分析


Flink 1.10

Flink 1.9 在合并 Blink 代码的时候,就已经完成了很多工作:深度 CodeGeneration、Binary 存储与计算、完善的 CBO 优化、Batch Shuffler,为后续的性能突破打下了扎实的基础。

Flink 1.10 继续完善 Hive 集成,并达到了生产级别的 Hive 集成标准,其它也在性能和开箱即用方面做了很多工作:

  • Hive 多版本的支持,支持了 Hive 1.0 以后的主要版本。

  • 向量化的 ORC 读,目前只在 Hive 2.0 以上版本才会默认开启。

    • Hive 1.X 版本的支持已经在进行中:FLINK-14802 [3]
    • Parquet 的向量化读支持也已经在开发中:FLINK-11899 [4]
  • 基于比例的弹性内存分配,这不仅利于 Operator 可以更多的使用内存,而且大大方便了用户的配置,用户不再需要配置 Operator 内存,Operator 根据 Slot 弹性的拿到内存,提高了 Flink 开箱即用的易用性。详见 FLIP-53 [5]

  • Shuffle 的压缩:Flink 默认给 Batch 作业开启中间数据落盘的方式,这有利于避免调度死锁的可能,也提供了良好的容错机制,但是大量的落盘可能导致作业瓶颈在磁盘的吞吐上,所以 Flink 1.10 开发了 Shuffle 的压缩,用 Cpu 换 IO。

  • 新调度框架:Flink 1.10 也引入新了的调度框架,这有利于 JobMaster 的调度性能,避免并发太大时,JobMaster 成为性能瓶颈。


Flink 参数分析

Flink 1.10 做了很多参数的优化,提高用户的开箱即用体验,但是由于批流一体的一些限制,目前也是需要进行一些参数设置的,这里本文粗略分析下。

Table 层参数:

  • table.optimizer.join-reorder-enabled = true:需要手动打开,目前各大引擎的 JoinReorder 少有默认打开的,在统计信息比较完善时,是可以打开的,一般来说 reorder 错误的情况是比较少见的。
  • table.optimizer.join.broadcast-threshold = 10_1024_1024:从默认值 1MB 调整到 10MB,目前 Flink 的广播机制还有待提高,所以默认值为 1MB,但是在并发规模不是那么大的情况下,可以开到 10MB。
  • table.exec.resource.default-parallelism = 800:Operator 的并发设置,针对 10T 的输入,建议开到 800 的并发,不建议太大并发,并发越大,对系统各方面的压力越大。

TaskManager 参数分析:

  • taskmanager.numberOfTaskSlots = 10:单个 TM 里的 slot 个数。
  • TaskManager 内存参数:TaskManager 的内存主要分为三种,管理内存、网络内存、JVM 相关的其它内存。需要理解下官网的文档,才能有效的设置这些参数。
  • taskmanager.memory.process.size = 15000m:TaskManager 的总内存,减去其它内存后一般留给堆内 3-5GB 的内存。
  • taskmanager.memory.managed.size = 8000m:管理内存,用于 Operator 的计算,留给单个 Slot 300 - 800MB 的内存是比较合理的。
  • taskmanager.network.memory.max = 2200mb:Task 点到点的通信需要 4 个 Buffers,根据并发大概计算得出需要 2GB,可以通过尝试得出,Buffers 不够会抛出异常。

网络参数分析

  • taskmanager.network.blocking-shuffle.type = mmap:Shuffle read 使用 mmap 的方式,直接靠系统来管理内存,是比较方便的形式。
  • taskmanager.network.blocking-shuffle.compression.enabled = true:Shuffle 使用压缩,这个参数是批流复用的,强烈建议给批作业开启压缩,不然瓶颈就会在磁盘上。

调度参数分析

  • cluster.evenly-spread-out-slots = true:在调度 Task 时均匀调度到每个 TaskManager 中,这有利于使用所有资源。
  • jobmanager.execution.failover-strategy = region:默认全局重试,需打开 region 重试才能 enable 单点的 failover。
  • restart-strategy = fixed-delay:重试策略需要手动设置,默认是不重试的。

其它 timeout 相关参数是为了避免调度和运行过程中,大数据量导致的网络抖动,进而导致作业失败的问题。

Flink 1.11 及后续规划

后续 Flink 社区会在完善功能的同时进一步夯实性能:

  • 提供 SQL Gateway 以及 JDBC Driver,目前提供独立仓库,面向 Flink 1.10。[6] [7]
  • 提供 Hive 语法兼容模式,避免 Hive 用户的困扰。
  • 完善 ORC 和 Parquet 的向量化读。
  • N-Ary stream operator [8]:开发 table 层的 chain 框架,进一步避免 Shuffle 落盘导致的开销。

查看更多:https://yqh.aliyun.com/detail/6264?utm_content=g_1000105248

上云就看云栖号:更多云资讯,上云案例,最佳实践,产品入门,访问:https://yqh.aliyun.com/


推荐阅读
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 深入解析GBASE系列中的列存储分析型数据库GBase 8a
    市场定位方面,GBase 8a 是 GBASE 系列中的一款高性能列存储分析型数据库,专为大规模数据仓库和实时分析场景设计。该数据库采用先进的列式存储技术,能够显著提升查询性能和数据压缩效率,适用于金融、电信、互联网等行业的大数据分析需求。此外,GBase 8a 还支持分布式部署,具备高可用性和可扩展性,能够满足企业级应用的严苛要求。 ... [详细]
  • 如何在MySQL中选择合适的表空间以优化性能和管理效率
    在MySQL中,合理选择表空间对于提升表的管理和访问性能至关重要。表空间作为MySQL中用于组织和管理数据的一种机制,能够显著影响数据库的运行效率和维护便利性。通过科学地配置和使用表空间,可以优化存储结构,提高查询速度,简化数据管理流程,从而全面提升系统的整体性能。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 【漫画解析】数据已删,存储空间为何未减?揭秘背后真相
    在数据迁移过程中,即使删除了原有数据,存储空间却未必会相应减少。本文通过漫画形式解析了这一现象背后的真相。具体来说,使用 `mysqldump` 命令进行数据导出时,该工具作为 MySQL 的逻辑备份工具,通过连接数据库并查询所需数据,将其转换为 SQL 语句。然而,这种操作并不会立即释放存储空间,因为数据库系统可能保留了已删除数据的碎片信息。文章进一步探讨了如何优化存储管理,以确保数据删除后能够有效回收存储空间。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在第七天的深度学习课程中,我们将重点探讨DGL框架的高级应用,特别是在官方文档指导下进行数据集的下载与预处理。通过详细的步骤说明和实用技巧,帮助读者高效地构建和优化图神经网络的数据管道。此外,我们还将介绍如何利用DGL提供的模块化工具,实现数据的快速加载和预处理,以提升模型训练的效率和准确性。 ... [详细]
  • 无法将文件下载到AWSLambda ... [详细]
  • hive和mysql的区别是什么[mysql教程]
    hive和mysql的区别有:1、查询语言不同,hive是hql语言,MySQL是sql语句;2、数据存储位置不同,hive把数据存储在hdfs上,MySQL把数据存储在自己的系统 ... [详细]
  • hadoop3.1.2 first programdefault wordcount (Mac)
    hadoop3.1.2安装完成后的第一个实操示例程 ... [详细]
  • 工作原理_一文理解 Spark 基础概念及工作原理
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了一文理解Spark基础概念及工作原理相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 在一系列的学习与实践后,Jsoup学习笔记系列即将进入尾声。本文详细介绍了如何使用Jsoup实现从Saz文件到Csv格式的数据解析功能。未来,计划将此功能进一步封装,开发成具有用户界面的独立应用程序,以增强其实用性和便捷性。对于希望深入掌握Jsoup技术的开发者,本文提供了宝贵的参考和实践案例。 ... [详细]
  • 前期Linux环境准备1.修改Linux主机名2.修改IP3.修改主机名和IP的映射关系4.关闭防火墙5.ssh免登陆6.安装JDK,配置环境变量等集群规划主机 IP安装软件运行进 ... [详细]
author-avatar
美丽容颜L_738
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有