热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

运用雅可比迭代法与高斯-赛德尔迭代法解线性方程组的比较分析

本文对比分析了雅可比迭代法和高斯-赛德尔迭代法在求解线性方程组中的应用效果。通过详细的算法介绍和C语言实现,展示了两种方法的具体步骤和计算过程。实验结果表明,高斯-赛德尔迭代法在收敛速度和计算效率上优于雅可比迭代法,但在某些特定条件下,雅可比迭代法仍具有一定的优势。此外,文章还探讨了不同初始值和矩阵特性对迭代法性能的影响,为实际应用提供了有价值的参考。

算法介绍(迭代法介绍):

代码C语言实现;

# include
# include
# define N 6

/*
*使用雅可比迭代法和高斯-赛德尔迭代法 求解线性方程组
*/
main(){
float NF2(float *x,float *y);
float A[N][N],b[N],sum=0;
float x[N],y[N]={0},x0[N];
int i,j,n=0;

//输入系数矩阵
for(i=0;i for(j=0;j scanf("%f",&A[i][j]);
}
}

//输入常数矩阵
for(i=0;i scanf("%f",&b[i]);
}

//输入解的初值
for(i=0;i scanf("%f",&x0[i]);
}

//输出系数矩阵
printf("输出该方程组的系数矩阵:\n");
for(i=0;i for(j=0;j printf("%3.1f ",A[i][j]);
}
printf("\n");
}

//输出成数矩阵
printf("输出该方程组的常数矩阵:\n");
for(i=0;i printf("%3.1f\n",b[i]);
}

//输出解的迭代初值
printf("解该方程组的的迭代初值是:\n");
for(i=0;i {
printf("%3.1f\n",x0[i]);
}
/*
*利用雅可比迭代法求解线性方程组
*/
for(i=0;i {
x[i]=x0[i];
}
for(n=0;;n++){
//计算下一个值
for(i=0;i sum=0;
for(j=0;j if(j!=i){
sum=sum+A[i][j]*x[j];
}
}
y[i]=(1/A[i][i])*(b[i]-sum);
//sum=0;
}
//判断误差大小
if(NF2(x,y)>0.01){
for(i=0;i x[i]=y[i];
}
}
else
break;
}
printf("经过%d次雅可比迭代解出方程组的解:\n",n+1);
for(i=0;i printf("%f ",y[i]);
}
/*
*利用高斯-赛德尔迭代法求解线性方程组
*/
for(i=0;i {
x[i]=x0[i];
y[i]=0;
}
for(n=0;;n++){
//计算下一个值
for(i=0;i sum=0;
for(j=0;j sum=sum+A[i][j]*y[j];
}
for(j=i+1;j sum=sum+A[i][j]*x[j];
}
y[i]=(1/A[i][i])*(b[i]-sum);
//sum=0;
}
//判断误差大小
if(NF2(x,y)>0.01){
for(i=0;i x[i]=y[i];
}
}
else
break;
}
printf("\n经过%d次高斯-赛德尔迭代解出方程组的解:\n",n+1);
for(i=0;i printf("%f ",y[i]);
}
}
//求两个向量差的二范数函数
float NF2(float *x,float *y){
int i;
float z,sum1=0;
for(i=0;i sum1=sum1+pow(y[i]-x[i],2);
}
z=sqrt(sum1);
return z;
}


代码运行输入输出结果;


推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 本教程涵盖OpenGL基础操作及直线光栅化技术,包括点的绘制、简单图形绘制、直线绘制以及DDA和中点画线算法。通过逐步实践,帮助读者掌握OpenGL的基本使用方法。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 本文介绍了几种不同的编程方法来计算从1到n的自然数之和,包括循环、递归、面向对象以及模板元编程等技术。每种方法都有其特点和适用场景。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文详细介绍了C语言中链表的两种动态创建方法——头插法和尾插法,包括具体的实现代码和运行示例。通过这些内容,读者可以更好地理解和掌握链表的基本操作。 ... [详细]
  • 探索1000以内的完美数:因数和等于自身
    本文探讨了如何在1000以内找到所有完美数,即一个数的因数(不包括自身)之和等于该数本身。例如,6是一个完美数,因为1 + 2 + 3 = 6。通过编程实现这一过程,可以更好地理解完美数的特性。 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
  • 使用GDI的一些AIP函数我们可以轻易的绘制出简 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细探讨了C语言中指针的概念,特别是指针在变量和数组中的应用。通过实例讲解,帮助读者更好地掌握指针的使用方法。 ... [详细]
  • 作为一名专业的Web前端工程师,掌握HTML和CSS的命名规范是至关重要的。良好的命名习惯不仅有助于提高代码的可读性和维护性,还能促进团队协作。本文将详细介绍Web前端开发中常用的HTML和CSS命名规范,并提供实用的建议。 ... [详细]
  • 本文介绍了一种解决二元可满足性(2-SAT)问题的方法。通过具体实例,详细解释了如何构建模型、应用算法,并提供了编程实现的细节和优化建议。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
author-avatar
钟爱gyt_201
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有