热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

范数的意义

转自https:blog.csdn.netyb536articledetails40900239思考了一些关于范数的直觉性理解,想先记下来,好好消化消化

转自 https://blog.csdn.net/yb536/article/details/40900239




思考了一些关于范数的直觉性理解,想先记下来,好好消化消化。

关于矩阵的理解,这里有一篇文章非常不错,对矩阵的直觉理解有深入的剖析,如何理解线性代数

那么在链接的文章中,如果你看过了,就可以理解两个重要的概念:

1.矩阵的本质是运动(跃迁)的描述,线性变换是描述运动的过程,所以线性变换可以用矩阵来表示。

2.一个对象可以表达为无穷多个合理选择的对象的线性和。所以向量表征对象,无穷多个向量可以合理选择线性组合表出其他向量。

我们这里就把向量等价于一个对象,一个矩阵等价于一个变换。

    一个向量有一定的维度,而这些维度可以看作这个对象的所有属性,比如一头大象有很多属性--体重,个头,长鼻子,大耳朵等。

    书中定义的范数,是在一般的线性空间中,使用范数来定义一个向量的长度。长度是什么?就是两个点之间的差别,那个这个差别如何而来?这样的话,每个人有每个人不同的看法,每个人看得角度不同。

    比如那头大象是向量x,那么一个中国人来看这头大象,他心目中产生的“大象”,就会和原始的大象产生差距,||x||a,就表示为向量x的a范数,表征着这个大象由这个中国人来看会产生的现实大象与心中“大象”的差别。

    那么接下来定义一个矩阵A,矩阵表征着一个空间到另一个空间的映射,我们继续来看大象,“现实”为一个空间,“心中”为另一个空间,大象从现实映射到心中,我们就可以用Ax来表征“心中的大象”,x-->Ax的变换过程,就是通过矩阵A的变换得到,那么矩阵的范数又是什么呢?矩阵的范数便是这些变换的范围,一个人看大象,可能想到一个动画片中的小象的形象,可能想到泰国,甚至想到蛤蟆(蛤蟆吞大象嘛),而从大象出发映射到这些想象的事物的映射所构成的空间,便是矩阵A的空间,A的a范数||A||a,便是一个中国人的想象空间中映射的长度。那么矩阵的范数当中,为什么多了一条相容性的规则呢?我们定义一个映射,也必须考虑到这个映射输入的数据的范围,比如f(x)=In(x),这个函数的x的范围就必须大于0,如果一个小于0的数x,就无法和这个映射In()相容,所以矩阵的范数与向量的范数相容也就是这个道理,我们定义一个范数就是让一个婴儿来看这头大象,你说婴儿能够看得懂这是什么玩意嘛?那么我们定义的矩阵范数不止一个,比如a范数是中国人看,b范数是美国人看,无论从向量范数比较(现实的大象和心中大象的差距),还是从矩阵范数比较(美国人可能不会想到蛤蟆~~)都会产生不同。

    那么一个矩阵范数总能找到一个向量范数与之相容也成立,一个婴儿总会有他看得懂的东西,一些存在他本能里的。

    那么所谓矩阵的谱半径,我理解为事物的本质。而矩阵的谱半径是这个矩阵所有矩阵范数的下确界,理解这一定理,也就直观的多。一个矩阵的矩阵范数是通过一个人来看大象的“现象”,现象永远无法超越本质,只能无限靠近本质,谱半径构成的球体是事物本质最大特征为半径构成的,矩阵范数永远只能徘徊于这个球体之外,或无限接近球体。(难怪有人说,哲学和数学一样,是万物的基础)

    所谓有限维空间的不同范数是等价的。这句话也好理解了,不同人看大象无论是想成动画片里的“飞天象”也好,或是蛤蟆也罢,最终还是要收敛到大象这个事物上去。

    那么所谓的算子范数,算子范数真包含于矩阵范数当中,从与向量范数的相容性出发。算子范数从现实的大象出发,包含中国人的想象,美国人的想象,但不包含婴儿的想象。基于大象出发,诱导出成年人的想象,构成想象空间。但注意,算子范数是范数,是一个实数,不等同于空间,是这个空间的上界,即使变换的上界,大象缩放的上界。

    以上是我对这些日子学习的范数概念的直觉性理解,我也是受到了上面推荐的那篇文章的启发,喜欢把具体的数据抽象为我们生活中的东西,不然虽懂得做数学公式推导,但无法理解这样推导的原理,那和计算器没什么区别。

            __     __       
           /  \~~~/  \    
     ,----(     ..    ) 
    /      \__     __/   
   /|         (\  |(
  ^ \   /___\  /\ |   
     |__|   |__|-" 

    


推荐阅读
  • 本文基于对相关论文和开源代码的研究,详细介绍了LOAM(激光雷达里程计与建图)的工作原理,并对其关键技术进行了分析。 ... [详细]
  • 本文详细记录了在基于Debian的Deepin 20操作系统上安装MySQL 5.7的具体步骤,包括软件包的选择、依赖项的处理及远程访问权限的配置。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文探讨了如何像程序员一样思考,强调了将复杂问题分解为更小模块的重要性,并讨论了如何通过妥善管理和复用已有代码来提高编程效率。 ... [详细]
  • python的交互模式怎么输出名文汉字[python常见问题]
    在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就进入到Python交互模式,它的提示符是>>>,此时我们可以使用print() ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文详细介绍了如何使用Maven高效管理多模块项目,涵盖项目结构设计、依赖管理和构建优化等方面。通过具体的实例和配置说明,帮助开发者更好地理解和应用Maven在复杂项目中的优势。 ... [详细]
  • 本文介绍了如何在具备多个IP地址的FTP服务器环境中,通过动态地址端口复用和地址转换技术优化网络配置。重点讨论了2Mb/s DDN专线连接、Cisco 2611路由器及内部网络地址规划。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍了在安装或运行 Python 项目时遇到的 'ModuleNotFoundError: No module named setuptools_rust' 错误,并提供了解决方案。 ... [详细]
  • CentOS7源码编译安装MySQL5.6
    2019独角兽企业重金招聘Python工程师标准一、先在cmake官网下个最新的cmake源码包cmake官网:https:www.cmake.org如此时最新 ... [详细]
author-avatar
喝西北风的东北风_711
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有