热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Eclipse+Maven构建Hadoop项目的方法步骤

这篇文章主要介绍了Eclipse+Maven构建Hadoop项目的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Maven 翻译为”专家”、”内行”,是 Apache 下的一个纯 Java 开发的开源项目。基于项目对象模型(Project Object Model 缩写:POM)概念,Maven利用一个中央信息片断能管理一个项目的构建、报告和文档等步骤。Maven 是一个项目管理工具,可以对 Java 项目进行构建、依赖管理。

在开发一些大型项目的时候,需要用到各种各样的开源包jar,为了方便管理及加载jar,使用maven开发项目可以节省大量时间且方便项目移动至新的开发环境。

开发环境

  • 系统:MacOS 10.14.1
  • Hadoop:2.7.0
  • Java:1.8.0
  • Eclipse:4.6.2
  • Maven: 3.3.9

Maven安装

我使用的这个版本的Eclipse已经自带了Maven插件,不需要在自行安装,因此我也没有实际操作,本文就不介绍如何配置。

至于怎么知道自己使用的Eclipse是否自带有Maven,可以在Eclipse->Preference->Maven->Installations查看是否有Maven及版本号。或者直接新建项目查看是否有Maven选项。

 

构建Hadoop环境

创建Maven项目

打开Eclipse,File->new->project,选择Maven,然后下一步next

选择Creat a simple project,然后下一步next

输入Group id和artifact id。然后finish。

groupid和artifactId被统称为“坐标”是为了保证项目唯一性而提出的,如果你要把你项目弄到maven本地仓库去,你想要找到你的项目就必须根据这两个id去查找。

groupId一般分为多个段,这里我只说两段,第一段为域,第二段为公司名称。域又分为org、com、cn等等许多,其中org为非营利组织,com为商业组织。举个apache公司的tomcat项目例子:这个项目的groupId是org.apache,它的域是org(因为tomcat是非营利项目),公司名称是apache,artigactId是tomcat。

比如我创建一个项目,我一般会将groupId设置为cn.snowin,cn表示域为中国,snowin是我个人姓名缩写,artifactId设置为testProj,表示你这个项目的名称是testProj,依照这个设置,你的包结构最后是cn.snowin.testProj打头。(引自 链接 )

完成上述步骤后,就可以在Project Explorer中看到刚刚创建的Maven项目。

 

增加Hadoop依赖

我使用的Hadoop 2.7版本,以下是我的POM配置文件


	4.0.0
 
	practice.hadoop
	simple-examples
	0.0.1-SNAPSHOT
	jar
 
	simple-examples
	http://maven.apache.org
 
	
		UTF-8
	
 
	
		
			junit
			junit
			4.12
			test
		
		
		
			org.apache.hadoop
			hadoop-common
			2.7.0
		
 
		
			org.apache.hadoop
			hadoop-hdfs
			2.7.0
		
		
		
			org.apache.hadoop
			hadoop-client
			2.7.0
		
 		
 		
			org.apache.mrunit
			mrunit
			1.1.0
			hadoop2
			test
		
		
		
			org.apache.hadoop
			hadoop-mapreduce-client-core
			2.7.0
		
		
		
			org.apache.hadoop
			hadoop-yarn-api
			2.7.0
		
		
		
			org.apache.hadoop
			hadoop-auth
			2.7.0
		

		
		
			org.apache.hadoop
			hadoop-minicluster
			2.7.0
			test
		
		
		
			org.apache.hadoop
			hadoop-mapreduce-client-jobclient
			2.7.0
			provided
		
 
	

在Project Explorer中右键该项目,选择build project,Maven就会根据POM.xml配置文件下载所需要的jar包。

稍等一段时间后,就可以看到Maven Dependencies中已经下载好的jar包。

 

hadoop配置文件

运行 MapReduce 程序前,务必将 /usr/local/Cellar/hadoop/2.7.0/libexec/etc/hadoop 中将有修改过的配置文件(如伪分布式需要core-site.xml 和 hdfs-site.xml),以及log4j.properties复制到 src/main/resources/

MapReduce实例—WordCount

src/main/java/ 路径下,创建java文件,代码如下

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

	public static class TokenizerMapper extends Mapper {

		/**
		 * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java
		 * 数据类型的类,这些类实现了WritableComparable接口,
		 * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。
		 */
		private final static IntWritable One= new IntWritable(1); // 值为1
		private Text word = new Text();

		public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
			StringTokenizer itr = new StringTokenizer(value.toString()); // 对字符串进行切分
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one); 
			}
		}
	}

	public static class IntSumReducer extends Reducer {
		private IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable values, Context context)
				throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		}
	}

	public static void main(String[] args) throws Exception {
		Configuration cOnf= new Configuration();
    conf.addResource("classpath:/hadoop/core-site.xml");
    conf.addResource("classpath:/hadoop/hdfs-site.xml");
    conf.addResource("classpath:/hadoop/mapred-site.xml");
//		String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
		String[] otherArgs = {"/input", "/output"};
		if (otherArgs.length != 2) {
			System.err.println("Usage: wordcount  ");
			System.exit(2);
		}
		Job job = new Job(conf, "word count");
		job.setJarByClass(WordCount.class);
		job.setMapperClass(TokenizerMapper.class);
		job.setCombinerClass(IntSumReducer.class);
		job.setReducerClass(IntSumReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		FileInputFormat.setInputDirRecursive(job, true);
		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 安装hadoop2.9.2jdk1.8centos7
    安装JDK1.8查看JDK1.8的安装https:www.cnblogs.comTJ21p13208514.html安装hadoop上传hadoop下载hadoop地址http:m ... [详细]
  • Hadoop——实验七:MapReduce编程实践
    文章目录一.实验目的二.实验内容三.实验步骤及结果分析 1.基于ubuntukylin14.04(7)版本,安装hadoop-eclipse-kepler-plugi ... [详细]
  • 一、Tomcat安装后本身提供了一个server,端口配置默认是8080,对应目录为:..\Tomcat8.0\webapps二、Tomcat8.0配置多个端口,其实也就是给T ... [详细]
  • 如何使用 `org.apache.tomcat.websocket.server.WsServerContainer.findMapping()` 方法及其代码示例解析 ... [详细]
  • 本文介绍了如何利用Struts1框架构建一个简易的四则运算计算器。通过采用DispatchAction来处理不同类型的计算请求,并使用动态Form来优化开发流程,确保代码的简洁性和可维护性。同时,系统提供了用户友好的错误提示,以增强用户体验。 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • hive和mysql的区别是什么[mysql教程]
    hive和mysql的区别有:1、查询语言不同,hive是hql语言,MySQL是sql语句;2、数据存储位置不同,hive把数据存储在hdfs上,MySQL把数据存储在自己的系统 ... [详细]
  • hadoop3.1.2 first programdefault wordcount (Mac)
    hadoop3.1.2安装完成后的第一个实操示例程 ... [详细]
  • 工作原理_一文理解 Spark 基础概念及工作原理
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了一文理解Spark基础概念及工作原理相关的知识,希望对你有一定的参考价值。 ... [详细]
author-avatar
mobiledu2502873827
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有