热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

EasyPR--开发详解(7)字符分割

大家好,好久不见了。一转眼距离上一篇博客已经是4个月前的事了。要问博主这段时间去干了什么,我只能说:我去“外面看了看”。图1我想去看看在外面跟几家创业公司谈了谈,交流了

大家好,好久不见了。

  一转眼距离上一篇博客已经是4个月前的事了。要问博主这段时间去干了什么,我只能说:我去“外面看了看”。

 

图1 我想去看看 

  

  在外面跟几家创业公司谈了谈,交流了一些大数据与机器视觉相关的心得与经验。不过由于各种原因,博主又回来了。

  目前,博主的工作是在本地的一个高校做科研。而研究的方向主要是计算机视觉。

 

图2 科研就是不断的探索过程

 

  由于我所做的是计算机视觉方向,跟EasyPR本身非常契合。未来这个这个系列的博客会继续下去,并且以后会有更加专业的内容。

  目前我研究的方向是文字定位,这个技术跟车牌定位很像,都是在图中去定位一些语言相关的位置。不同之处在于,车牌定位只需要处理的是在车牌中出现的文字,字体,颜色都比较固定,背景也比相对单一(蓝色和黄色等)。

  文字定位则复杂很多,研究界目前要处理的是是各种类型,不同字体,且拥有复杂背景的文字。下图是一张样例:

 

 

图3 文字定位图片样例

 

  可以看出,文字定位要处理的问题是类似车牌定位的,不过难度要更大。一些文字定位的技术也应该可以应用于车牌的定位和识别。

  未来EasyPR会借鉴文字定位的一些思想和技术,来强化其定位的效果。

 

一.前言

  今天继续我们EasyPR的开发详解。

  这几个月我收到了不少的邮件问:为什么EasyPR开发详解教程中只有车牌定位的部分,而没有字符识别的部分?

  这个原因一是由于整个开发详解是按照车牌识别的流程顺序来的,因此先讲定位,后面再讲字符识别。所以字符识别的部分出来的比较晚。

  二是由于字符识别相对于前面的车牌定位而言,显得较为简单。不像在一个复杂和低分辨场景下进行车牌定位,在字符分割和识别的部分时,所需要处理的场景已经较为固定了,因此其处理技术也较为单一。

  这两个原因是字符分割和识别部分出来较晚的原因。不过在本篇博客中我们会将字符分割部分讲完。

 

二.整体流程

  我们首先看一下,字符分割所需要处理的输入: 即是前面车牌定位中的结果,一个完整的车牌。 

 图4 字符分割模块的输入 

 

  由于在车牌定位中,我们使用了归一化过程。因此所需要处理的车牌的大小是统一的,在目前的版本中(v1.3),这个值是136*36

  那么字符分割的结果就是将车牌中的所有文字一一分割开来,形成单一的字符块。生成的字符块就可以输入下一步的字符识别部分进行识别。在EasyPR里,字符识别所使用的技术是人工神经网络,也就是ANN

  具体而言,字符分割过程是如何做的呢?简单说,就是:灰度化->颜色判断->二值化->取轮廓->找外接矩形->截取图块。

图5 字符分割处理流程 

 

  下面,我们使用下图的车牌完整的跑一遍字符分割的流程,以此对其有一个全局的认识。 

 

图6 原始图片

 

  1.灰度化

  首先,我们把彩色的图片转化为灰度化图片。注意:为了以后可以利用彩色信息,在前面的车牌检测过程中,我们的输出结果不是灰度化图片,而是彩色图片。这样以后当我们改正算法,想利用彩色信息时就可以使用了。

  但是在这里,我们的算法还是针对的是灰度化图片,因此首先进行灰度化处理。

  灰度化后的图片见下图:

 

图7 灰度化后结果 

 

  2.颜色判断

  灰度化之后,为了分割字符。我们需要获取字符的轮廓。注意:分割字符有很多种方法。例如投影法,滑动窗口判断法,在这里,EasyPR使用的是取字符轮廓法。

  因为需要取轮廓,就需要把图片转化成一个二值化图片。不过,由于蓝色和黄色车牌图片的区别,两者需要用的二值化参数不一样,因此这里需要对车牌图片的颜色进行一个判断。车牌颜色对二值化的影响的分析见后面其他细节章节。

  这里颜色判断的使用的是前面颜色定位详解里的模板匹配法。

 

图8 颜色判断

 

  3.二值化

  获取颜色后,就可以选择不同的参数进行大津阈值法来进行二值化。对于本示例图片中的蓝色车牌而言,使用的参数为CV_THRESH_BINARY。

  二值化后的效果见下图:

 

图9 二值化后结果

 

   4.取轮廓

  接下来,使用被多次用到的取轮廓方法findContours。关于这个方法的具体内容,在前面的开发详解中已做过介绍,这里不再赘述。

  取轮廓后的结果如下图:

 

图10 取轮廓操作

 

   注意:直接使用findContours方法取轮廓时,在处理中文字符,也就是“苏”时,会发生断裂现象。因此为了处理中文字符,EasyPR换了一种思路,使用了额外的步骤来解决这个问题。具体可以见后面的“中文字符处理”章节。

 

  5.找外接矩形

  使用了中文字符处理方法以后,成功获取了所有的字符的外接矩形。

  具体见下图:

 

图11 所有字符的外接矩形

 

   6.截取图块

  最后,把图中的外接矩形一一截取出来,归一化到统一格式。留待输入下个步骤--字符识别模块处理。

  归一化后字符图块见下图:

            

图12 截取并归一化的图块

 

三.中文字符处理

  上面的流程在处理英文车牌时,效果是很好的。但是在处理中文车牌时,存在一个很大的问题。

  在取轮廓时,中文由于自身的特性,例如有笔画区间,取轮廓会造成断裂现象。例如下图中的。英文字符通过取轮廓都被完整的包括了,而字则分成了两个连通区域。

图13 取轮廓操作示例

 

  虽然并不是所有的中文都会存在这个问题(例如下图的字),但直接用取轮廓操作已经不合适了。

  EasyPR是如何解决这个问题的呢?其实想法很简单。那就是既然有些中文字符没办法用取轮廓处理,那么就干脆先不处理中文字符,而是用取轮廓操作处理中文字符后面的字符。例如“苏A88M88,其中“A88M88这六个字符我都能用取轮廓操作获得。我先获取这六个字符,再想办法获取中文字符。

图14 “津”字

 

  获取这六个字符后,接下来该如何获取“苏”这个中文字符的轮廓呢?

  这里的关键就是“苏”字符后面的A字符,这个字符在中文车牌里代表城市的代码,我们在这里简称它为“城市字符”或者“特殊字符”。

  这个字符有一个特征,就是与后面的字符存在一定的间隔。但是与前面的中文字符靠的较紧。倘若我获取了这个特殊字符的外接矩形,只要把这个外接矩形向左做一些的偏移(偏移的大小可以通过经验指定,例如设置为字符宽度的1.15倍),这样这个外接矩形就成了包含中文字符的一个矩形了。下面就可以截取中文字符的图块。

  下图就是“特殊字符”与被反推得到的“中文字符”的矩形,在图中用红色矩形表示。

图15 反推得到的中文字符位置

 

  下面的问题就是如何获取特殊字符”的位置?

  一种方法是把所有取轮廓操作获取到的矩形进行排序,最左边的就是特殊字符的图块。但是有些中文字符会被取轮廓操作截取为一个连通区域。在这种情况下,最左边的图块矩形是中文字符的矩形,而不是特殊字符的矩形了。所以这个方法不能用。

  另一种方法就是依次判断所有取轮廓操作得到的矩形的位置,设矩形的中点恰好在整个车牌的1/7到2/7之间时的矩形为特殊矩形。这样操作的前提是我们的车牌定位的非常准确,恰到把整个车牌截取的正正好。在这种情况下,只要外接矩形满足这些条件,就可以判断为特殊字符的矩形。

  这个方法思路很简单,实际中应用效果也不错,因此也是EasyPR目前采用的方法。

图16 获取特殊字符的位置

 

  以下是特殊字符判断的代码:

 View Code

 

  以上就是EasyPR能处理中文车牌的主要原因。原先的taotao1233的代码中无法处理中文的原因就是没有这样一步预处理。其实这是一个很简单的思想,但在之前并没有被实现。EasyPR里实现了这个思路,同时发现,这个方法效果出奇的好。基本可以应对所有的情况。所以说,这个方法可以说是一个简单,有效的处理中文车牌的方法。

 

四.其他一些细节

  1.颜色判断

  在进行二值化前,需要进行一次颜色判断,这是因为对于蓝色和黄色车牌而言,使用的二值化策略必须不同。

   

图17 蓝色与黄色车牌的不同

 

  对于蓝色车牌而言,使用的参数为CV_THRESH_BINARY。

  而对于黄色车牌而言,使用的参数为CV_THRESH_BINARY_INV。

  假设黄色车牌使用了CV_THRESH_BINARY作为参数,则会发生如下图一样的二值化结果,其中字符部分变成了黑色,而背景则是白色(同理,蓝色车牌使用CV_THRESH_BINARY_INV也是一样的效果)。

  在这种不正确的参数带来的二值化情况下,取轮廓操作将无法按照预期的行为进行处理。因此,必须使用正确的二值化参数。

     

图18 不正确参数的二值化效果

 

  在颜色判断时,有一个小技巧,就是先把四周的”截取后再进行颜色的判断,这样可以消除车牌定位时一些多余的四周的干扰。

  代码如下:

1   Mat tmpMat = input(Rect_<double>(w * 0.1, h * 0.1, w * 0.8, h * 0.8));
2
3 // 判断车牌颜色以此确认threshold方法
4 Color plateType = getPlateType(tmpMat, true);

  

  颜色判断方法的代码如下:

 View Code

 

  2.排除缝隙

  在获得中文字符图块以后,下面一步就是把剩下的图块获取了。不过由于中文车牌一般只有7个字符,所以可以把后面的图块从左到右排序,依次选择6个即可。一些会被误判为“I”的缝隙可以通过这种方法排除出去。

  例如下图中,最右边的一个缝隙会被误识别为"1"。但是倘若从左到右依次选择的话,这个缝隙并不会被选入候选集合中,因为它已经是“第八个”字符了。

图19 最右边会被误判为"1"的缝隙

 

  排序与依次选择的代码如下:

 View Code

 

  3.去除柳钉

  有些中国的车牌中有一个非常妨碍识别的东西,那就是柳钉。倘若对一副含有柳钉的图进行二值化,极有可能会出现下图的结果。一些字符图块(下图的"9"和"1")通过柳钉的原因联系到了一体,那样的话就无法通过取轮廓操作来分割了。

图20 柳钉的影响

 

  因此在二值化之后,还需要一个去除柳钉的操作。

  去除柳钉的思想也并不复杂,就是依次扫描每行,判断跳变次数。车牌字符所在的行的跳变次数是很多的,而柳钉所在的行就会偏少。因此当发现某行跳变次数较少,则可以把该行的所有像素值赋值为0,这样就会大幅度消除柳钉的影响了。

  下图就是去除柳钉后的效果。

图21 去除柳钉后的效果

 

  去除柳钉函数的代码如下:

 View Code

 

五.总结 

  最后回顾一下整体的处理流程,首先是对车牌图像进行灰度化,然后根据车牌的不同颜色来进行不同的二值化处理。二值化完后首先去除柳钉,然后进行取轮廓操作。

  取轮廓操作以后,在所有的轮廓中根据先验知识,找到代表城市的字符,也就是A”中“A”的位置,根据“A的位置来反推“苏”的位置。

  最后将找到的这些轮廓依次排序,从左到右依次选择6个,和第一个的中文字符组成7个字符的图块数组,输入到下一步字符识别模块中进行处理。

  整个字符分割流程就到此结束了,还是比较简单的。其中的中文字符位置的确定使用了先验知识这种方法。这种方法在面对固定已知场景中是较好的方法,但是面对特殊情况时就可能会有不太好的效果,因此要根据具体情况来权衡。

 

六.未来展望

  本篇字符分割流程就到此结束。当下,EasyPR1.3 版也发布了,对整体架构以及处理效率都有所提升,可以下载试用。

  未来的博客会按照每2个月一篇的速度诞生,下篇博客的内容是”字符识别与人工神经网络”。

 

 

版权说明:

 

  本文中的所有文字,图片,代码的版权都是属于作者和博客园共同所有。欢迎转载,但是务必注明作者与出处。任何未经允许的剽窃以及爬虫抓取都属于侵权,作者和博客园保留所有权利。


推荐阅读
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • java程序员_Java程序员最新职业规划,逆袭面经分享
    java程序员_Java程序员最新职业规划,逆袭面经分享 ... [详细]
  • 本文详细介绍了Manacher算法,该算法能够在O(n)时间内找到字符串中的最长回文子串。通过对字符串进行预处理,并使用动态规划的思想,Manacher算法能够高效地解决这一问题。 ... [详细]
  • 地球坐标、火星坐标及百度坐标间的转换算法 C# 实现
    本文介绍了WGS84坐标系统及其精度改进历程,探讨了火星坐标系统的安全性和应用背景,并详细解析了火星坐标与百度坐标之间的转换算法,提供了C#语言的实现代码。 ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文详细记录了作者从7月份的提前批到9、10月份正式批的秋招经历,包括各公司的面试流程、技术问题及HR面的常见问题。通过这次秋招,作者深刻体会到了技术积累和面试准备的重要性。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 在Word中编辑复杂的数学公式常常让人感到头疼,尤其是处理偏微分方程(PDE)等高级数学内容时。然而,最近GitHub上的一个开源项目latexify_py展示了如何利用Python轻松生成LaTeX数学公式,极大地简化了这一过程。 ... [详细]
author-avatar
爱娟一辈子-_709
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有