热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

对C语言整数类型的一点理解

作者:autogeek原文链接:http:www.cnblogs.comautogeekp4321635.html1.先从一个列子引出问题:sample_1unsign

作者:autogeek

原文链接:http://www.cnblogs.com/autogeek/p/4321635.html

1.先从一个列子引出问题:

//sample_1 unsigned char 
#include 
#include 

int main()
{
    unsigned char a = 255;
    a = a + 1;
    printf("a = %d\n", a);
    return 0;
}

输出结果:

image

为什么是0 而不是256, 这是很显然的发生了溢出。现在从机器存储的角度来看这个问题:

在C语言中,char表示占用一个byte空间,在机器上一个byte可存储的范围是0000 0000 b ~ 1111 1111 b, 现在不考虑符号问题,仅仅把它解释为无符号的整数,那么对应十进制范围是0 ~ 255, 现在我们的a初始值是255 即 1111 1111 b,接着给它加1,那么二进制运算后变为 1 0000 0000 b, 由于进位,结果变成了9个bit,但是别忘了char是只占一个byte的,所以最前面的那个bit 将会被丢弃,结果变成 0000 0000 b, 因此输出结果会是0.

这个列子说明,整数在机器上存储的方法是满足二进制的运算律的,但是当用一定类型表示出来时,这个二进制的值就要按照那个类型的约束表现出来,就像上面的列子一样,即使最后的二进制结果是9个bit,但是char类型明确约束你只能占8个bit,最后只能丢弃1个bit之后按8个bit的结果展示出来。

 

2.第二个列子,引入有符号类型的表示问题:

//sample_2 signed char
#include 
#include 

int main()
{
    char a = 127;
    a = a + 1;

    printf("a = %d\n", a);
    return 0;
}

输出结果:

image

先不忙分析问题原因,先来搞清楚负数是如何在计算机上存储的。简单的说,计算机擅长做0和1的加法,并不愿意像人类用的十进制一样去引入负号这个东西,否则会增加硬件和软件的复杂性和成本,如何解决这个问题,众所周知的就是用补码。可以举个列子去理解补码的作用,1+(?)= 0,很显然 1 + (-1)= 0, 这样就把减法问题转化为加法问题,那么在计算机中怎么去表示(-1)? 同样的,我们站在计算机的角度想问题(先拿一个byte的来举例),(0000 0001 b) + (?) = (0000 0000 b), 当然是(0000 0001 b) + (1111 1111 b) = (0000 0000 b),因此(1111 1111 b) 就是十进制1(原码)的补码,教科书中说补码可以通过对原码取反加一得到,其实通过上面的列子可以换一种角度解读补码的含义:即补码就是那个使得和原码相加之后结果能够为0的数。说了这么多,就是想说明对一个byte来说,(-1)在计算机上存储为(1111 1111 b)。

那么对于有符号char型来说,还是一个byte的空间,还是0000 0000 b ~ 1111 1111 b的范围,但是现在要把这个范围按有符号整数的表示来翻译了,可以分为3部分来理解,即 <0,0 ,> 0,0000 0000 b显然是0, 0000 0001 b ~ 0111 1111 b显然是 1 ~ 127, 1000 0000 b ~ 1111 1111 b 是 –1 ~ –128。由此也可以发现,可以把最高位作为符号位来理解,0正1负。

image

换一种表达方式 (图画的太渣了,求推荐好的画图工具)

image

上面这两张图希望能表达清楚我上面的分析结论,即计算机上存储的整数一定是满足二进制的运算律的,但是怎么去解释它就取决于整型变量的类型约束条件了。

说了这么多,再来解释第二个列子就简单多了。第一步char a = 127 说明a是有符号的,127在计算机上存储为0111 1111b, 第二步 a = a + 1,a在计算机上变成了1000 0000b, 对应上面的分析,把它按照有符号数来解释即 -128,因此输出-128。

 

3.上第三个列子,关于符号位扩展问题:

//sample_3
#include 
#include 

int main()
{
    char a = 127;
    a = a + 1;

    printf("a = %u\n", a);
    return 0;
}

输出结果:

image

我只是将sample_2的代码中%d改成了%u,输出结果就差之千里,其实还是一个道理,用不同的方式解释计算机存储的二进制值就会得到不同的结果。当然这里还涉及符号位扩展以及类型提升。

首先说类型提升,%d表示打印int类型有符号十进制数,%u表示打印int无符号十进制数,当a被打印时隐式的发生类型提升,即char被提升为int,即8位被扩展为32位。

对于sample_3来说:

a的值在1个byte中,是 0111 1111b

a加1后在1个byte中,是 1000 0000b

a的值被类型提升并扩展为4个byte后,是11111111 11111111 11111111 10000000 b,按照%u来解释是多少呢,当然是4294967168。

可是为什么扩展后前面的空位都是补1而不是补0呢,这个有个原则是 “有符号数扩展符号位,也就是向前补1,无符号数扩展0”。

那么sample_2应该也发生类型提升和符号扩展,为什么没出问题呢。因为虽然a的值被类型提升并扩展为4个byte后,依然是11111111 11111111 11111111 10000000 b,按照%d来解释,他是00000000 00000000 00000000 10000000 b的补码,所以表达为-128。

以上是自己的一些理解,难免有错误,欢迎讨论。


推荐阅读
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • GetWindowLong函数
    今天在看一个代码里头写了GetWindowLong(hwnd,0),我当时就有点费解,靠,上网搜索函数原型说明,死活找不到第 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。 ... [详细]
  • EPICS Archiver Appliance存储waveform记录的尝试及资源需求分析
    本文介绍了EPICS Archiver Appliance存储waveform记录的尝试过程,并分析了其所需的资源容量。通过解决错误提示和调整内存大小,成功存储了波形数据。然后,讨论了储存环逐束团信号的意义,以及通过记录多圈的束团信号进行参数分析的可能性。波形数据的存储需求巨大,每天需要近250G,一年需要90T。然而,储存环逐束团信号具有重要意义,可以揭示出每个束团的纵向振荡频率和模式。 ... [详细]
  • 本文介绍了使用kotlin实现动画效果的方法,包括上下移动、放大缩小、旋转等功能。通过代码示例演示了如何使用ObjectAnimator和AnimatorSet来实现动画效果,并提供了实现抖动效果的代码。同时还介绍了如何使用translationY和translationX来实现上下和左右移动的效果。最后还提供了一个anim_small.xml文件的代码示例,可以用来实现放大缩小的效果。 ... [详细]
  • Nginx使用(server参数配置)
    本文介绍了Nginx的使用,重点讲解了server参数配置,包括端口号、主机名、根目录等内容。同时,还介绍了Nginx的反向代理功能。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • android listview OnItemClickListener失效原因
    最近在做listview时发现OnItemClickListener失效的问题,经过查找发现是因为button的原因。不仅listitem中存在button会影响OnItemClickListener事件的失效,还会导致单击后listview每个item的背景改变,使得item中的所有有关焦点的事件都失效。本文给出了一个范例来说明这种情况,并提供了解决方法。 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文介绍了OC学习笔记中的@property和@synthesize,包括属性的定义和合成的使用方法。通过示例代码详细讲解了@property和@synthesize的作用和用法。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
author-avatar
mobiledu2502896655
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有