热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

大数据已经凉凉了吗?转行大数据还有前途吗?

但是现在是9102年,哦不,是2019年了。2.市场已经趋于饱和,红利期已经过去,对于数据开发人员的要求也随着变高。3.各种培训机构已经批量产出了大批大批的大数据人才,一个个体是

前言

在 2013 年,大数据刚刚崭露头角,有一大批程序员,在那个时间点,踏上了靠转型大数据升职加薪的日子。在那个时候,只要稍微懂一点点 Hadoop,会写一点点 HQL,工资翻一番是分分钟的事情。

但是现在是9102年,哦不,是2019年了。单单靠一个技能就想转型到大数据已经没什么机会了。

原因有这么几个。

1. 数据开发平台化比较成熟,普通的开发人员已经可以完成绝大部分的大数据开发,不需要专业的数据开发人员介入,所以靠单一简单技能已经不吃香了。

2.市场已经趋于饱和,红利期已经过去,对于数据开发人员的要求也随着变高。

3.各种培训机构已经批量产出了大批大批的大数据人才,一个个体是拼不过这批经过包装的职业培训的人的。

4.市场对于大数据已经不反应过度了,已经不会给出几年前那种趋之若鹜那么高的待遇了,就是一个普通的工程师

当然,也不是说就不能转型大数据了,恰恰相反,我们要把大数据技能纳入到我们的日常技能树里,就像 MySQL、Oracle 一样。但是我们从观念上可能要有所改变,不要把大数据看成是一个单一的技能,也不要把大数据就当成是救命稻草。大数据更应该是一种态度,是一种常态,我们要能够有用数据看问题的眼界,使用数据分析工具,洞悉数据背后的商业潜能。这才是接下来我们要发力的点,单单靠努力学习大数据工程师技能,已经不太行了。

但以防万一,我还是介绍一下当前大数据中端人才正在干的事情,低端人才基本不要了。

究竟转型大数据有多少种

很多小伙伴一聊到数据挖掘和大数据呢,都会无法自拔地想到机器学习算法,其实嘛,绝大多数的数据岗位并不需要这么高深的知识。但是如果你掌握了技能书的更多内容呢,你可能可以对你数据的上下游有更加强的把控力度,你可能可以进阶到下一个阶段。

数据挖掘的技能树横向和纵向都是很深的,并不适合所有的hdsdxhd,因为往深了学确实很难,需要机器学习、深度学习、概率论、线性代数、智能优化方法等很深层次的数学知识,需要分布式一致性的各种算法,需要资源调度的各种理论。

很多人都觉得要掌握所有的技能才能开始这项工作。两个字概括今天这篇文章,未必。一句话,每个岗位都有自己的侧重点,各项技能在每个岗位的权重都不一样。

数据从产生到被使用,最基础的链路就是。采集 -> 清洗 -> 处理 -> 分析 -> 决策。而在这个链路上,从前到后,所需要的技能是不一样的。一般来说,越处于后端门槛越高,复杂程度也越高。当然我不是说前面就不重要了,每一个环节都很重要,只是门槛高低而已。每个阶段做到牛逼你都可以很牛逼。

所以数据开发的职位从纵向来说,可以分为 数据采集工程师->ETL工程师->数据开发工程师->数据算法工程师->数据分析师。从横向来说,还可以有数据集群运维工程师、大数据平台开发工程师、数据治理架构师、数据服务架构师、大数据系统架构师、大数据框架开发工程师 这些职位来支持前面的这些流程更加方便快捷地开发和落地,以及更好地维护。

如果我想转型,我需要什么技能呢?

从职业发展来说,大数据开发一般来说有这么三条线。

主线1:服务支持线(新手基本不受欢迎了)

数据集群运维工程师->大数据平台开发工程师->大数据系统架构师->大数据框架开发工程师

必选:Linux、Hadoop集群,Hive、Zookeeper、HBase、Ozzie、Flume

可选:Impala、各种框架源码

语言:shell、Python

建议路线:1、先学习基础的 Hadoop 集群维护技能,写一些 shell 脚本,使用定时调度功能。2、学会使用平台工具进行监控和维护,并参与到平台开发和工具开发中。3、对现有系统架构和框架进行重新架构或改良。

主线2:数据仓库线(新手基本不受欢迎了)

数据采集工程师->ETL工程师->数据治理架构师->数据服务架构师

必选:HiveQL、Spark、Hive、Flink、Kafka

可选:Storm、分布式一致性算法、JVM调优、MapReduce、BitTable

语言:Scala,SQL,Java

主线3:数据挖掘线(分析能力强的还是很吃香)

数据开发工程师->数据算法工程师->数据分析师

必选:可视化技术、SQL、统计学、概率论、智能优化、机器学习工具(Tensorflow、scikit-learn)

可选:caffee,torch,OpenCV

语言:Python,R

我是不是学 Scala 就算转型了?

最后聊聊数据从业人员的语言问题。总是有小伙伴问我,该不该学 R,该不该学 Scala ,该不该学 Python,该不该用 Java。我的观点就是,每个语言都只是自己的工具,不要守着一门语言死磕,每个语言都有它自己擅长的领域,在每个领域你尽量用它擅长的语言去处理,就好了。当然,如果你已经工作了五六年还被语言局限,那你可能要好好思考一下了。

2019年08月编程语言排行榜

Scala:Spark的实现语言是 Scala,现在也有大神用 PySpark 来实现一些数据处理的东西,为了兼容机器学习框架。

Python:数据爬取和机器学习从业必备,其他语言基本都是旁支。不要以为Python跑得很慢,其实那些框架都是 C++ 和 C 实现的,只是套了一个 Python 的壳,还做了很多优化,比你自己写的 C++ 还快。

R:数据探索和数据可视化有非常多场景是用 R 语言来进行做的。

Java:Hadoop 套件基本都是用 Java 实现的,熟悉 Java 可以让你更加清晰你所占用的资源分布,瓶颈是在 cpu 还是 内存,是磁盘 IO 还是 网络 IO。

结论

大数据还是值得转型的,而且很值得,但是想着只靠一个技能翻身的机会没了,想靠着转型大数据涨薪的日子,也一去不复返了。

但是,大数据中高端人才,正在为推动行业发展发挥着越来越大的作用,你,还有机会。

往期精选

直戳泪点!数据从业者权威嘲讽指南!

AI研发工程师成长指南

数据分析师做成了提数工程师,该如何破局?

算法工程师应该具备哪些工程能力

数据团队思考:如何优雅地启动一个数据项目!

数据团队思考:数据驱动业务,比技术更重要的是思维的转变


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • 本文整理了一份基础的嵌入式Linux工程师笔试题,涵盖填空题、编程题和简答题,旨在帮助考生更好地准备考试。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 2016-2017学年《网络安全实战》第三次作业
    2016-2017学年《网络安全实战》第三次作业总结了教材中关于网络信息收集技术的内容。本章主要探讨了网络踩点、网络扫描和网络查点三个关键步骤。其中,网络踩点旨在通过公开渠道收集目标信息,为后续的安全测试奠定基础,而不涉及实际的入侵行为。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 数字经济浪潮下企业人才需求变化,优质IT培训机构助力技能提升
    随着云计算、大数据、人工智能、区块链和5G等技术的迅猛发展,数字经济已成为推动经济增长的重要动力。据信通院数据,2020年中国数字经济占GDP比重达38.6%,整体规模突破39.2万亿元。本文探讨了企业在数字化转型中对技术人才的需求变化,并介绍了优质IT培训机构如何助力人才培养。 ... [详细]
  • 如何撰写数据分析师(包括转行者)的面试简历?
    CDA数据分析师团队出品,作者:徐杨老师,编辑:Mika。本文将帮助您了解如何撰写一份高质量的数据分析师简历,特别是对于转行者。 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
author-avatar
手机用户2502903053
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有