热门标签 | HotTags
当前位置:  开发笔记 > 开放平台 > 正文

大数据项目为什么失败,2017年将有何不同

大,数据,项目,为什么,失败,2017

 

随着企业努力在数字时代完全采用数据驱动,生态系统正在发生重大转变。由于企业应用程序生成数据成为一种趋势和潮流,收集数据的洞察力变得越来越复杂。

此外,数十亿用户和数万亿连接的物联网设备在企业外部产生指数级更多的数据。企业部署云计算,移动和分析技术,希望将这些数据转化为洞察力。然而根据调配机构Gartner预测,2017年将有60%的大数据项目失败。他们不会超越试验阶段,最终将会放弃。

企业在将数据资产链接到战略价值之间发生了什么脱节?根据专家的经验,主要是有工作人员缺乏技能或专业知识,以及技术战略与整体公司需求之间的不匹配这两个主要障碍。

专业知识的差距

当大数据处于起步阶段时,当时可用的技术并不成熟。谷歌,雅虎和Facebook等拥有非常深厚技术底蕴的企业不得不从根本上建立基础设施来处理这些问题。由于这些公司取得了成功,许多企业试图用他们自己的基于Hadoop的大数据项目来效仿他们。

从那里,IT和数据专业人员对Hadoop作为一个技术工具包可能做什么,以及对产生结果需要多少精力和资源有着不当的期望。Gartner公司的一项调查发现,49%的受访者引用“确定如何从Hadoop获取价值”作为是否采纳的关键抑制因素。大多数企业缺乏部署这种技术的技能。而具有讽刺意味的是,他们不需要这样的规模。

大数据已经变得过于依赖于技术。许多大数据项目失败,是因为它们需要大量的前期资源,并且部署刚性架构,一旦项目进行之后,却没有提高灵活性。

一个成功的大数据项目是从对想要解决的业务问题和想要获得的价值的深刻理解开始的。如果没有,无论企业达到什么目标,项目将无法达到预期或提供足够的投资回报率,可能会失败或取消。

下一个关键要素是建立一个团队,将IT,数据科学和业务线的视角结合在一起。业务专家可以通过数据计划确定需要解决的主要业务挑战。IT专家可以提供访问数据的技能,并精确定位执行项目所需的适当基础设施。最后,数据专家可以提供分析和提取洞察所需的数学和定量技能。这对于围绕这些技能建立团队的项目的成功至关重要。

第三个元素是短时间值(TtV)。一个团队成立越快,并产生具体和可衡量的价值,就越容易让组织和高级管理层在这个空间继续投资,以避免失败或取消。

大多数基于Hadoop的项目都在这三个方面失败。项目太过专注技术工作。此外,难以找到足够技能的人才,并且需要太多的时间和精力来建立基础设施。最后,初始投资太高,实施时间太长,使得很难快速实验和迭代成功。

采用更好的方法

随着企业通过大数据项目工作,我专家看到的一个趋势是采用基于云计算的数据仓库和数据湖解决方案作为Hadoop项目的替代品。企业已经开始进行这样的努力,这将更容易和更快从云计算中获得价值,而不是在基础设施建设上投资。正确的云计算解决方案避免了重大的前期资本支出,提供轻松和成本有效的扩展,并以高度管理的解决方案的形式将技术负担转移给技术供应商。

专家建议,如果企业没有内部的经验和技能,可以建设在云中,并避开广泛和成本高昂的基础设施。

2017年将是人们开始远离Hadoop的一年。人们将看到从大数据的魅力和理想化的概念转变为更实用和有效的用例。人们期望半结构化数据和机器学习将继续推动大数据的需求,并且在这些领域拥有专业知识将至关重要。对于企业来说,最终要成功,他们需要明确的商业挑战来解决,他们必须经历失败早期,从小到大的过程。他们应该在过度投资不必要的架构之前探索采用云计算。


本文作者:佚名

来源:51CTO


推荐阅读
  • 本文探讨了2012年4月期间,淘宝在技术架构上的关键数据和发展历程。涵盖了从早期PHP到Java的转型,以及在分布式计算、存储和网络流量管理方面的创新。 ... [详细]
  • 本文详细介绍了 Java 中的 org.apache.hadoop.registry.client.impl.zk.ZKPathDumper 类,提供了丰富的代码示例和使用指南。通过这些示例,读者可以更好地理解如何在实际项目中利用 ZKPathDumper 类进行注册表树的转储操作。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 本文详细探讨了 org.apache.hadoop.ha.HAServiceTarget 类中的 checkFencingConfigured 方法,包括其功能、应用场景及代码示例。通过实际代码片段,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 简化报表生成:EasyReport工具的全面解析
    本文详细介绍了EasyReport,一个易于使用的开源Web报表工具。该工具支持Hadoop、HBase及多种关系型数据库,能够将SQL查询结果转换为HTML表格,并提供Excel导出、图表显示和表头冻结等功能。 ... [详细]
  • 从码农到创业者:我的职业转型之路
    在观察了众多同行的职业发展后,我决定分享自己的故事。本文探讨了为什么大多数程序员难以成为架构师,并阐述了我从一家外企离职后投身创业的心路历程。 ... [详细]
  • 本文探讨了如何在Hive(基于Hadoop)环境中编写类似SQL的语句,以去除字段中的空格。特别是在处理邮政编码等数据时,去除特定位置的空格是常见的需求。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 本文详细介绍了如何在 Android 中使用值动画(ValueAnimator)来动态调整 ImageView 的高度,并探讨了相关的关键属性和方法,包括图片填充后的高度、原始图片高度、动画变化因子以及布局重置等。 ... [详细]
  • CentOS 6.8 上安装 Oracle 10.2.0.1 的常见问题及解决方案
    本文记录了在 CentOS 6.8 系统上安装 Oracle 10.2.0.1 数据库时遇到的问题及解决方法,包括依赖库缺失、操作系统版本不兼容、用户权限不足等问题。 ... [详细]
  • 本文详细介绍了如何搭建和配置ZooKeeper集群,包括环境变量设置、配置文件调整、主机映射关系配置及启动验证等关键步骤。 ... [详细]
  • 本文详细介绍了 Linux 系统中用户、组和文件权限的设置方法,包括基本权限(读、写、执行)、特殊权限(SUID、SGID、Sticky Bit)以及相关配置文件的使用。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
author-avatar
杨子忧愁_347
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有