作者:洋洋哥2602913063 | 来源:互联网 | 2023-09-17 14:57
在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。小编整理了一些大数据分析能用到的工具,助力大家更好的应用大数据技术。
一、hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop
是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop
是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop
是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop
还是可伸缩的,能够处理 PB
级数据。此外,Hadoop
依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用 Java
语言编写的框架,因此运行在 Linux
生产平台上是非常理想的。Hadoop
上的应用程序也可以使用其他语言编写,比如 C++。
二、HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与
通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆
比特网络技术,扩展研究和教育机构及网络连接能力。
三、Storm
Storm是***的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、
Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、
ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测
试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
四、Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache
Drill 实现了 Google's Dremel。该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
五、RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
六、 Pentaho BI
Pentaho BI 平台不同于传统的BI
产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE
服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。