热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

大数据(二)flink1概念介绍

Flink介绍: Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。2015年升级为Apache的顶级项目,然后突然爆
Flink介绍:

Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。

2015年升级为Apache的顶级项目,然后突然爆发,之后被阿里收购。

基本上国内说得出名字的大厂都在用flink。

Flink特点:

1,事件驱动:

     根据数据的到来触发一系列的计算,输出等。

2,流处理和批处理

     批处理的特点就是 有界,持久,量大,非常适合做离线计算

     流处理的特点就是 无界,实时,无需针对整个数据集执行操作,而是对传输过来的

每个数据项执行操作,一般用户实时计算

 

无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。

有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。

 

Flink分层api

分别是ProcessFunction,DataStream Api,SQL/Table Api,

最底层的是ProcessFunction,功能最强大,但也最复杂。

一般我们操作的都是DataStream这一层来处理数据,实在不行就嵌入ProcessFunction层。

DataStream Api提供了很多模块因子,比如由用户定义的多种形式的转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows)

Table API 是以表为中心的声明式编程,其中表可能会动态变化(在表达流数据时)

像阿里Flink的分支 blink 就是往这方面发展,Blink比起Flink的优势就是对SQL语法的更完善的支持以及执行SQL的性能提升。

未来以后可能大量的开发就落在Table API 这层咯。

支持exactly-once语义

这个特性就是确保一条数据,收并且只能收到一次。这个就能保证结果的准确性。

Flink架构组成

Flink其实跟flume差不多,主要是是3部分,flume是 source -> channal -> sink

             flink 也是 source -> operator -> sick

   flink通过source 接受数据,source 可以是配多种多样,不过生成上大部分都是用kafka.

  因为前面说了,flink是事件驱动型,当source监听kafka的数据后,会向flink的jobManager

提交job,jobManage会根据job等资源优化后就会分配Taskmanager,Taskmanager是真正计算的地方,它会通过一系列的

计算因子,最后将结果返回给jobManage,再返回给flink客户端。

 

Worker与Slots

每一个worker(TaskManager)是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。·

每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他jobsubtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。

通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。

图 TaskManager与Slot

Task Slot是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置,而并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。

也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率

 


推荐阅读
  • 并发编程入门:初探多任务处理技术
    并发编程入门:探索多任务处理技术并发编程是指在单个处理器上高效地管理多个任务的执行过程。其核心在于通过合理分配和协调任务,提高系统的整体性能。主要应用场景包括:1) 将复杂任务分解为多个子任务,并分配给不同的线程,实现并行处理;2) 通过同步机制确保线程间协调一致,避免资源竞争和数据不一致问题。此外,理解并发编程还涉及锁机制、线程池和异步编程等关键技术。 ... [详细]
  • 深入解析 Synchronized 锁的升级机制及其在并发编程中的应用
    深入解析 Synchronized 锁的升级机制及其在并发编程中的应用 ... [详细]
  • 本文是Java并发编程系列的开篇之作,将详细解析Java 1.5及以上版本中提供的并发工具。文章假设读者已经具备同步和易失性关键字的基本知识,重点介绍信号量机制的内部工作原理及其在实际开发中的应用。 ... [详细]
  • 性能测试中的关键监控指标与深入分析
    在软件性能测试中,关键监控指标的选取至关重要。主要目的包括:1. 评估系统的当前性能,确保其符合预期的性能标准;2. 发现软件性能瓶颈,定位潜在问题;3. 优化系统性能,提高用户体验。通过综合分析这些指标,可以全面了解系统的运行状态,为后续的性能改进提供科学依据。 ... [详细]
  • 在Cisco IOS XR系统中,存在提供服务的服务器和使用这些服务的客户端。本文深入探讨了进程与线程状态转换机制,分析了其在系统性能优化中的关键作用,并提出了改进措施,以提高系统的响应速度和资源利用率。通过详细研究状态转换的各个环节,本文为开发人员和系统管理员提供了实用的指导,旨在提升整体系统效率和稳定性。 ... [详细]
  • MATLAB字典学习工具箱SPAMS:稀疏与字典学习的详细介绍、配置及应用实例
    SPAMS(Sparse Modeling Software)是一个强大的开源优化工具箱,专为解决多种稀疏估计问题而设计。该工具箱基于MATLAB,提供了丰富的算法和函数,适用于字典学习、信号处理和机器学习等领域。本文将详细介绍SPAMS的配置方法、核心功能及其在实际应用中的典型案例,帮助用户更好地理解和使用这一工具箱。 ... [详细]
  • 深入解析CAS机制:全面替代传统锁的底层原理与应用
    本文深入探讨了CAS(Compare-and-Swap)机制,分析了其作为传统锁的替代方案在并发控制中的优势与原理。CAS通过原子操作确保数据的一致性,避免了传统锁带来的性能瓶颈和死锁问题。文章详细解析了CAS的工作机制,并结合实际应用场景,展示了其在高并发环境下的高效性和可靠性。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 该问题可能由守护进程配置不当引起,例如未识别的JVM选项或内存分配不足。建议检查并调整JVM参数,确保为对象堆预留足够的内存空间(至少1572864KB)。此外,还可以优化应用程序的内存使用,减少不必要的内存消耗。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 本文深入解析了Java 8并发编程中的`AtomicInteger`类,详细探讨了其源码实现和应用场景。`AtomicInteger`通过硬件级别的原子操作,确保了整型变量在多线程环境下的安全性和高效性,避免了传统加锁方式带来的性能开销。文章不仅剖析了`AtomicInteger`的内部机制,还结合实际案例展示了其在并发编程中的优势和使用技巧。 ... [详细]
  • MySQL数据库安装图文教程
    本文详细介绍了MySQL数据库的安装步骤。首先,用户需要打开已下载的MySQL安装文件,例如 `mysql-5.5.40-win32.msi`,并双击运行。接下来,在安装向导中选择安装类型,通常推荐选择“典型”安装选项,以确保大多数常用功能都能被正确安装。此外,文章还提供了详细的图文说明,帮助用户顺利完成整个安装过程,确保数据库系统能够稳定运行。 ... [详细]
  • 本文介绍了如何利用 Delphi 中的 IdTCPServer 和 IdTCPClient 控件实现高效的文件传输。这些控件在默认情况下采用阻塞模式,并且服务器端已经集成了多线程处理,能够支持任意大小的文件传输,无需担心数据包大小的限制。与传统的 ClientSocket 相比,Indy 控件提供了更为简洁和可靠的解决方案,特别适用于开发高性能的网络文件传输应用程序。 ... [详细]
author-avatar
chenkun
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有