热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

CodingtheMatrix(2):向量空间

1.线性组合概念很简单:当然,这里向量前面的系数都是标量。2.Span向量v1,v2,.,vn的所有线性

 

1. 线性组合

概念很简单:

当然,这里向量前面的系数都是标量。

 

2. Span

向量v1,v2,.... ,vn的所有线性组合构成的集合,称为v1,v2,... ,vn的张成(span)。向量v1,v2,...vn的张成记为Span{v1,v2,... ,vn}。

回顾上一次课里面的电脑登陆认证的过程,假设黑客知道使用 GF(2) 加密,截获到一组电脑的问题 alpha 以及用户的回答 beta:

那么即使黑客不知道密码, alpha 所组成的 span 里面的所有问题都可以通过线性组合来得到答案了,证明如下:

 

3. Generator

实际上就是基的概念:

 

4. 向量在实数上的 span

span 就是向量的所有线性组合。一个非零向量的 span 通过原点的线,是一维,两个向量的 span 可能是一维的,亦可能是二维。

一个过原点的平面可以表示成:

{[x, y, z]: [a, b, c] · [x, y, z] = 0}

在几何上, (a, b, c) 又叫法向量。两个平面相交,可以得到一根直线:

可以看到,有两种方法表示一个几何物体:

  1. 几个向量的 span
  2. 齐次线性方程组(b = 0)的解集。

 

5. Convex Full

向量线性组合系数之和为 1,可以得到 Convex Full, 实际上这就是一个仿射组合。两个二维向量的 Convex Full 是一条线段,三个三维向量的 Convex Full 是一个三角形。

 

6. 仿射空间和仿射组合

过三个点 u1, u2, u3 的平面可以表示成 u1 + span{u2-u1, u3-u1},进一步可以推导如下:

同样的仿射组合的定义可以表示成:

和上面的推导一样,实际上

 

7. 齐次与非齐次线性方程组

齐次线性方程组的解集表示了一个过原点的几何物体,如点,直线,平面等,这个结集也可以看做一个 span。假设 U1 和 U2 是非齐次方程组的解,那么将 U1 和 U2 分别带到方程组,想减可以得到 U1 - U2 是齐次方程的组。所以有:

联系第6小节中的推导,假设 U1, U1, U3 是非齐次线性方程的三个解,那么 U3 -U1 和 U2 -U1 必定是齐次线性方程组的两个解,可以看到,非齐次方程组的解就在  u1 + span{u2-u1, u3-u1} 的仿射空间内。

 

 

转:https://www.cnblogs.com/daniel-D/p/3194070.html



推荐阅读
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 本文详细介绍了 BERT 模型中 Transformer 的 Attention 机制,包括其原理、实现代码以及在自然语言处理中的应用。通过结合多个权威资源,帮助读者全面理解这一关键技术。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文探讨了如何像程序员一样思考,强调了将复杂问题分解为更小模块的重要性,并讨论了如何通过妥善管理和复用已有代码来提高编程效率。 ... [详细]
  • python的交互模式怎么输出名文汉字[python常见问题]
    在命令行模式下敲命令python,就看到类似如下的一堆文本输出,然后就进入到Python交互模式,它的提示符是>>>,此时我们可以使用print() ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 本文详细介绍了如何使用Maven高效管理多模块项目,涵盖项目结构设计、依赖管理和构建优化等方面。通过具体的实例和配置说明,帮助开发者更好地理解和应用Maven在复杂项目中的优势。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
author-avatar
手机用户2602934963
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有