热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

CodeforcesRound#635(Div.2)E.KaaviandMagicSpell

题意:给一个长度为n的字符串S和一个长度为m的字符串T,1

题意:给一个长度为n的字符串S和一个长度为m的字符串T,1<=m<=n,然后开始有一个空串A,接下来可对S串进行n次操作:

操作1:把S的首个字符添加到A的开头然后删掉

操作2:把S的首个字符添加到A的尾端然后删掉

问:在操作过程中使得A的前m个字符为T(也就是前缀为T)的情况共有多少?长度不同或者是操作序列中有某个地方不同可视为是不同情况。

 

Sample1:

Input:

  abab

  ba

Output:

  12

Sample2:

Input:

  defineintlonglong

  signedmain

Output:

  0

Sample3:

Input:

  rotator

  rotator

Output:

  4

Sample4:

Input: 

  cacdcdbbbb

  bdcaccdbbb

Output:

  24

原题链接:https://codeforces.ml/contest/1337/problem/E



看了排名前几的大佬的做法,发现是用的区间dp

假设现在已经操作到了第k个字符,那么说明前面已经存在长度为k-1的字符串了,所以这第k个字符是添加到这长度为k-1的字符串的前面或者是后面而已,这里就有一个区间dp的点,设dp[i][j]为与字符串T的第i个字符到第j个字符完全匹配的已构造好的串有几个。需要注意的是,我们可以把T串看做与S串等长,只是在T串中从m+1个字符起其字符就可以是任意的而已(因为不作为前缀的一部分了,所以可以随便)。

 

为了dp方便,我们设字符串的起始下标为1

接下来我们枚举S[i],区间长度就等于i数值本身,然后在T串上从左到右截取长度i的字符串,我们就检测S[i]是否与这个字符串的左端或者右端相等,我们枚举到S[i]的时候,前面i-1长度的串的各种构造情况我们也都已经知道了的,也就是说T串的L+1~R的子串跟L~R-1的子串用前i-1个S串的字符能构造出多少个我们是已经知道的,在长度为i-1的串的基础上把S[i]前插或者后插就可以得到长度为i的串,dp[L][R]就可以从dp[L+1][R]跟dp[L][R-1]的状态上转移过来。

于是我们可以有如下状态转移方程:

 

 

区间长度为1时如果有字符相等那么就会存在dp[i][i] += dp[i][i-1]的情况,对于这种情况其实就是单个字符S[i]在空串基础上前插或后插后成为了符合条件的串之一,实际上应该是dp[i][i] += 1,所以我们就预处理一下使dp[i][i-1] = 1即可。

 

最终结果就是dp[1][m~n]的和。



AC代码:

 

#include
#define rep(i, l, r) for(long long i=l; i<=r ;i++)
using namespace std;
typedef long long ll;
typedef pair PII;
typedef vector VI;
ll gcd(ll n, ll m) { return n % m == 0 ? m : gcd(m, n % m);}
const ll M = 998244353;
const int Maxn = 3e3 + 10;
char S[Maxn], T[Maxn];
ll dp[Maxn][Maxn];
int main()
{
ios::sync_with_stdio(false);
//freopen("data.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
cin>>(S + 1)>>(T + 1);
int n = strlen(S + 1);
int m = strlen(T + 1);
for(int i=1; i dp[i][i-1] = 1;
for(int i=1, len=1; i<=n ;i++, len++)
for(int l=1, r=l+len-1; r<=n ;l++, r++){
if(l > m || S[i] == T[l]) dp[l][r] = (dp[l][r] + dp[l+1][r]) % M;
if(r > m || S[i] == T[r]) dp[l][r] = (dp[l][r] + dp[l][r-1]) % M;
}
ll ans = 0;
for(int i=m; i<=n ;i++)
ans = (ans + dp[1][i]) % M;
cout< return 0;
}

 



推荐阅读
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • 深入解析JVM垃圾收集器
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版,详细探讨了JVM中不同类型的垃圾收集器及其工作原理。通过介绍各种垃圾收集器的特性和应用场景,帮助读者更好地理解和优化JVM内存管理。 ... [详细]
  • 本文介绍如何解决在 IIS 环境下 PHP 页面无法找到的问题。主要步骤包括配置 Internet 信息服务管理器中的 ISAPI 扩展和 Active Server Pages 设置,确保 PHP 脚本能够正常运行。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 探讨一个老旧 PHP MySQL 系统中,时间戳字段不定期出现异常值的问题及其可能原因。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 优化联通光猫DNS服务器设置
    本文详细介绍了如何为联通光猫配置DNS服务器地址,以提高网络解析效率和访问体验。通过智能线路解析功能,域名解析可以根据访问者的IP来源和类型进行差异化处理,从而实现更优的网络性能。 ... [详细]
  • Android 九宫格布局详解及实现:人人网应用示例
    本文深入探讨了人人网Android应用中独特的九宫格布局设计,解析其背后的GridView实现原理,并提供详细的代码示例。这种布局方式不仅美观大方,而且在现代Android应用中较为少见,值得开发者借鉴。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Windows服务与数据库交互问题解析
    本文探讨了在Windows 10(64位)环境下开发的Windows服务,旨在定期向本地MS SQL Server (v.11)插入记录。尽管服务已成功安装并运行,但记录并未正确插入。我们将详细分析可能的原因及解决方案。 ... [详细]
  • PyCharm中配置Pylint静态代码分析工具
    本文详细介绍如何在PyCharm中配置和使用Pylint,帮助开发者进行静态代码检查,确保代码符合PEP8规范,提高代码质量。 ... [详细]
  • 本文详细介绍了 GWT 中 PopupPanel 类的 onKeyDownPreview 方法,提供了多个代码示例及应用场景,帮助开发者更好地理解和使用该方法。 ... [详细]
author-avatar
井底蛙的天空13
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有