热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

常用CMOS模拟开关功能和原理(4066,405153)

开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开
开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。

一、常用CMOS模拟开关引脚功能和工作原理
  1.四双向模拟开关CD4066
  
CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。

  2.单八路模拟开关CD4051
  
CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表1


输入状态 接通通道
INH C B A
0 0 0 0 “0”
0 0 0 1 “1”
0 0 1 0 “2”
0 0 1 1 “3”
0 1 0 0 “4”
0 1 0 1 “5”
0 1 1 0 “6”
0 1 1 1 “7”
1 均不接通


  3.双四路模拟开关CD4052
  
CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。

表2


输入状态 接通通道
INH B A
0 0 0 “0”X、“0”Y
0 0 1 “1”X、“1”Y
0 1 0 “2”X、“2”Y
0 1 1 “3”X、“3”Y
1 均不接通


  4.三组二路模拟开关CD4053
  
CD4053的引脚功能见图4。CD4053内部含有3组单刀双掷开关,3组开关具体接通哪一通道,由输入地址码ABC来决定。其真值表见表3。

表3


输入状态 接通通道
INH C B A
0 0 0 0 cX、bX、aX
0 0 0 1 cX、bX、aY
0 0 1 0 cX、bY、aX
0 0 1 1 cX、bY、aY
0 1 0 0 cY、bX、aX
0 1 0 1 cY、bX、aY
0 1 1 0 cY、bY、aX
0 1 1 1 cY、bY、aY
1 均不接通


  5.十六路模拟开关CD4067
  
CD4067的引脚功能见图5。CD4067相当于一个单刀十六掷开关,具体接通哪一通道,由输入地址码ABCD来决定。其真值表见表4。

表4


D C B A INH 接通通道
0 0 0 0 0 “0”
0 0 0 1 0 “1”
0 0 1 0 0 “2”
0 0 1 1 0 “3”
0 1 0 0 0 “4”
0 1 0 1 0 “5”
0 1 1 0 0 “6”
0 1 1 1 0 “7”
1 0 0 0 0 “8”
1 0 0 1 0 “9”
1 0 1 0 0 “10”
1 0 1 1 0 “11”
1 1 0 0 0 “12”
1 1 0 1 0 “13”
1 1 1 0 0 “14”
1 1 1 1 0 “15”
1 均不接通


二、典型应用举例
  1.单按钮音量控制器
  
单按钮音量控制器电路见图6。VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。VT1的D极和S极之间的电阻随VGS成反比变化,因此控制VGS就可实现对音量大小的控制。VT1的G极接有3个模拟开关S1~S3和一个100μF的电容,其中100μF电容起电压保持作用。由于VMOS管的G极和S极之间的电阻极高,故100μF电容上的电压可长时间基本保持不变。模拟开关S1为电容提供充电回路,当S1导通时,电源通过S1给电容充电,电容上电压不断增高,使VT1导通电阻越来越小,使音量也越来越小。模拟开关S2为电容提供放电回路,当S2导通时,电容通过S2放电,电容上电压不断下降,使音量越来越大。模拟开关S3起开机音量复位作用,开机时,电源在S3控制端产生一短暂的正脉冲,使S3导通,由于与S3连接的电阻较小,故使电容很快充到一定的电压,使起始音量处于较小的状态。F1~F6及其外围元件组成长短脉冲识别电路。静态时,F1、F2输入为高电平,当较长时间按压按钮开关AN时,F4输出变高,经100k电阻给3.3μF电容充电,当充电电压超过CMOS门转换电压时,F5输出由高变低,F6输出由低变高,模拟开关S2导通,100μF电容放电,音量变大。与此同时,F1输出也变高,也给电容充电,但F1输出的一次正跳变不足以使电容上电压超过转换电压,故F2输出仍为高电平,F3输出低电平,模拟开关S1保持截止。当连续按动按钮开关AN时,F4输出也不断变化,输出为高时,给电容充电,而输出变低时,电容又很快通过二极管VD3放电,故电容上电压总是达不到转换电压,因此F6输出一直为低。而此时F1输出连续高低变化,经二极管整流不断给电容充电,使3.3μF电容上电压迅速达到转换电压,F2输出变低,F3输出变高,模拟开关S1导通,给电容充电,音量变小。由此,利用一只按钮开关,实现了对音量的大小控制。

  2.四路视频信号切换器
  
四路视频信号切换器电路见图7。“与非”门YF3、YF4组成脉冲振荡器,振荡频率由100k电位器调节。若嫌调节范围不够,可适当更换0.47μF电容和100k电阻。脉冲振荡器受YF1、YF2组成的双稳态电路的控制,按S1时,YF1输出低电平,脉冲振荡器停振;按S2时,YF1输出高电平,脉冲振荡器开始振荡。脉冲振荡器的输出作为CD4017十进制计数器的时钟,使Y0~Y3依次出现高电平,相应的四个模拟开关依次导通,由Vi1~Vi4输入的视频信号被依次切换至输出端,完成了四路视频信号的切换。显然,增加一片CD4066可做成八路视频信号切换器,相应地,由Y0~Y7进行模拟开关控制,Y8连至Cr。依此类推,可做成更多路数的视频信号切换器。而且,输入、输出也可以是其它形式的信号。如要求视频、音频信号同传,则并接上相应数量的模拟开关即可。

  3.数控电阻网络
  
图8示出数字控制电阻网络电阻值大小的电路。在图8中,CD4066的四个独立开关分别并接在四个串接电阻上,电阻的值是按二进制位权关系选择的。当某个开关接通时,并接在该开关上的电阻被短路,此处假设该电阻阻值RRON(RON为模拟开关的导通电阻);当某个开关断开时,电阻两端阻值仍保持原阻值不变,此处假设该电阻阻值RROFF(ROFF为模拟开关断开时的电阻)。四个开关的控制端由四位二进制数A、B、C、D控制,因此,在A、B、C、D端输入不同的四位二进制数,可控制电阻网络的电阻变化,并从其上获得2~16种不同的电阻值。按图8所给的电阻值,该电阻网络所对应的16种阻值列于表5中。

表5


输入二进制数 电阻值(MΩ)
D C B A
0 0 0 0 3.75
0 0 0 1 3.50
0 0 1 0 3.25
0 0 1 1 3.00
0 1 0 0 2.75
0 1 0 1 2.50
0 1 1 0 2.25
0 1 1 1 2.00
0 0 0 0 1.75
1 0 0 1 1.50
1 0 1 0 1.25
1 0 1 1 1.00
1 1 0 0 0.75
1 1 0 1 0.50
1 1 1 0 0.25
1 1 1 1 4×RON≈2kΩ


  4.音量调节电路
  
音量调节电路见图9。音频信号由Vi端输入,经分压电阻R11和隔直电容加到由R1~R10构成的加/减电阻网络。CD40192为十进制加/减计数器,“与非”门YF3、YF4构成低频振荡器,“与非”门YF1、YF2分别为加计数端CPU和减计数端CPD的计数闸门。

  当D1端为高电平时,闸门YF1开通,低频脉冲经YF1加到CD40192的CPU端,使其作加法计数,输出端Q0~Q3数据增大,使16路模拟开关的刀向低端转换,顺序接通R1~R10,接通的电阻增大,经与R11分压后,使输出音频信号Vo增大;当D2端为高电平时,闸门YF2开通,低频脉冲经YF2加到CD40192的CPD端,使其作减法计数,输出端Q0~Q3数据减小,使16路模拟开关的刀向高端转换,顺序接通R10~R1,接通的电阻减小,经与R11分压后,使输出音频信号Vo减小。


推荐阅读
  • 随着EOS主网的成功启动,众多开发者和投资者对其给予了高度关注。本文旨在介绍如何构建EOS开发环境,包括所需的基本硬件配置、软件安装步骤以及常见问题的解决方案。 ... [详细]
  • 本文详细介绍了基于E5 2666 V3处理器的剪辑主机配置,包括华南x99主板、三星ECC DDR3内存、映泰760显卡、120GB SSD与2TB HDD组合存储方案以及鑫谷GP750金牌电源等关键组件。 ... [详细]
  • 计算机架构基础 —— 冯·诺依曼模型
    本文探讨了计算机科学的基础——冯·诺依曼体系结构,介绍了其核心概念、发展历程及面临的挑战。内容涵盖早期计算机的发展、图灵机的概念、穿孔卡的应用、香农定理的重要性以及冯·诺依曼体系结构的具体实现与当前存在的瓶颈。 ... [详细]
  • 深入理解聚簇索引与非聚簇索引及其优化策略
    本文探讨了数据库性能优化中的关键因素——索引,特别是聚簇索引与非聚簇索引的区别及应用场景。通过实例分析,提供了如何有效利用这两种索引来提升数据库查询性能的方法。 ... [详细]
  • 本文介绍了如何使用pidstat工具来监控和分析Linux系统中进程的CPU使用率、内存消耗、磁盘I/O操作及线程的上下文切换情况。通过具体命令示例,帮助读者掌握如何有效地使用此工具进行性能调优。 ... [详细]
  • 如何高效优化系统加载进度条
    本文介绍了多种方法来优化计算机的启动和运行过程中的加载进度条,包括硬件调整、系统设置优化等,旨在提升用户体验。 ... [详细]
  • 当您感觉当前使用的微型计算机CPU性能不足,需要更换更高性能的CPU时,正确的拆卸方法至关重要。本文将详细介绍几种安全有效的微型计算机CPU拆卸方法,帮助您顺利完成升级。 ... [详细]
  • 深入解析进程、线程与协程的关系及差异
    本文详细探讨了进程、线程和协程这三个概念的基本定义、功能特点以及它们之间的相互关系。通过对比分析,帮助读者更好地理解这三种并行计算模型在实际应用中的选择与运用。 ... [详细]
  • 联想笔记本NVIDIA独立显卡性能及选购指南
    本文继续深入探讨联想笔记本中的NVIDIA独立显卡性能,并提供详细的型号对比与选购建议。通过分析不同显卡的性能表现,帮助读者更好地理解如何根据自己的需求选择合适的笔记本电脑。 ... [详细]
  • Python并行处理:提升数据处理速度的方法与实践
    本文探讨了如何利用Python进行数据处理的并行化,通过介绍Numba、多进程处理以及Pandas DataFrame上的并行操作等技术,旨在帮助开发者有效提高数据处理效率。 ... [详细]
  • 深入理解Java内存模型的核心原则
    本文详细解析了Java内存模型(JMM)的核心原则,包括原子性、可见性和有序性,并探讨了JMM如何通过特定机制保证这些特性,为开发者提供多线程编程的指导。 ... [详细]
  • 在研究Linux内核代码时,经常会遇到与‘队列’相关的术语。本文旨在全面介绍Linux系统中几种常见的队列类型及其应用,帮助读者更好地理解和使用这些机制。 ... [详细]
  • 深入理解BIO与NIO的区别及其应用
    本文详细探讨了BIO(阻塞I/O)和NIO(非阻塞I/O)之间的主要差异,包括它们的工作原理、性能特点以及应用场景,旨在帮助开发者更好地理解和选择适合的I/O模型。 ... [详细]
  • 本文详细介绍了基于模型相似性的聚类采样算法的实现过程,并探讨了该算法在面对样本量和梯度攻击时的表现。通过具体的实验结果,分析了算法的鲁棒性和潜在的安全威胁。 ... [详细]
  • 微型计算机主机的关键组件解析
    本文详细探讨了微型计算机主机的核心组成部分,包括微处理器、内存储器、输入输出接口等,并解释了这些部件如何协同工作以构建一个完整的微型计算机系统。 ... [详细]
author-avatar
手浪用户2602930803
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有