热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

分层聚类算法

分层聚类算法转载▼看到很多地方都讲到分层聚类法,这到底是什么东东,今天来研究一下。分层聚类法是聚类算法的一种,聚类算法是数据挖掘的核心技术

分层聚类算法

 
转载





看到很多地方都讲到分层聚类法,这到底是什么东东,今天来研究一下。

分层聚类法是聚类算法的一种,聚类算法是数据挖掘的核心技术,把数据库中的对象分类是数据挖掘的基本操作,其准则是使属于同一类的个体间距离尽可能小,而不同类个体间距离尽可能大。

聚类算法一般分为分割分层两种。

分割聚类算法通过优化评价函数把数据集分割为K个部分,它需要K作为输人参数。

典型的分割聚类算法有K-means算法, K-medoids算法、CLARANS算法。

分层聚类由不同层次的分割聚类组成,层次之间的分割具有嵌套的关系。它不需要输入参数,这是它优于分割聚类算法的一个明显的优点,其缺点是终止条件必须具体指定。

典型的分层聚类算法有BIRCH算法、DBSCAN算法和CURE算法等。

各聚类算法的比较结果

算法        算法效率   适合的数据类型   发现的聚类类型   对脏数据或异常数据的敏感性   对数据输入顺序的敏感性
BIRCH         高            数值              凸形或球形                  不敏感                          不太敏感
DBSCAN     一般          数值                任意形状                    敏感                               敏感
CURE         较高          数值                任意形状                   不敏感                          不太敏感
K-poto      一般         数值和符号         凸形或球形                  敏感                                一般
CLARANS   较低           数值               凸形或球形                  不敏感                          非常敏感
CUQUE      较低           数值               凸形或球形                  一般                               不敏感

参考文献

【1】张红云、刘向东、段晓东、苗夺谦、马垣,数据挖掘中聚类算法比较研究,《计算机应用与软件》2003 Vol.20 No.2 : 5~6



推荐阅读
  • 智能全栈云风暴:AI引领的企业转型之路
    当提及AI,人们脑海中常浮现的是天才少年独自编写算法,瞬间点亮机器人的双眼。然而,真正的AI革命正由大型企业和机构推动,它们利用全栈全场景AI技术,实现数字化与智能化的深度转型。 ... [详细]
  • 解决getallheaders函数导致的500错误及8种服务器性能优化策略
    本文探讨了解决getallheaders函数引起的服务器500错误的方法,并介绍八种有效的服务器性能优化技术,包括内存数据库的应用、Spark RDD的使用、缓存策略的实施、SSD的引入、数据库优化、IO模型的选择、多核处理策略以及分布式部署方案。 ... [详细]
  • 大数据核心技术解析
    本文深入探讨了大数据技术的关键领域,包括数据的收集、预处理、存储管理、以及分析挖掘等方面,旨在提供一个全面的技术框架理解。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 本文深入探讨了数据挖掘领域内的十个经典算法,包括但不限于C4.5决策树、K-Means聚类、支持向量机等。这些算法不仅在理论上有深厚的数学基础,也在实践中展现出强大的应用价值。 ... [详细]
  • 数据集成策略:ETL与ELT架构对比及工具选择
    随着企业信息化的深入发展,‘数据孤岛’问题日益突出,阻碍了数据的有效利用与整合。本文探讨了如何通过构建数据仓库解决这一问题,重点分析了ETL与ELT两种数据处理架构的特点及适用场景,为企业选择合适的ETL工具提供了指导。 ... [详细]
  • 致信息安全爱好者的成长指南
    本文旨在为信息安全爱好者提供一份详尽的成长指南,涵盖从学习心态调整到具体技能提升的各个方面。 ... [详细]
  • 本文探讨了数据挖掘技术的发展及其在大数据环境下的应用流程,重点介绍了统计学、在线分析处理、信息检索、机器学习、专家系统和模式识别等领域的最新进展。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 本文整理了关于Sia去中心化存储平台的重要网址和资源,旨在为研究者和用户提供全面的信息支持。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
author-avatar
手机用户2502903053
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有