热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

CS231n作业笔记2.3:优化算法Momentum,RMSProp,Adam

CS231n简介详见CS231n课程笔记1:Introduction。本文都是作者自己的思考,正确性未经过验证,欢迎指教。作业笔记本部分实现的是Momentum,RMSProb,

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

本部分实现的是Momentum,RMSProb, Adam三种优化算法,优化算法是用于从随机点出发,逐渐找到局部最优点的算法。关于各种优化算法的详细介绍,请参考CS231n课程笔记6.1:优化迭代算法之SGD,Momentum,Netsterov Momentum,AdaGrad,RMSprop,Adam。

1. Momentum

方程:

v = mu*v - learning_rate*dx
x += v

代码:

  v = v*config['momentum']-config['learning_rate']*dw
next_w = w + v

2. RMSProp

方程:

cache = cache*decay_rate + (1-decay_rate)*dx*dx
x -= learning_rate * dx/(sqrt(cache)+1e-7)

代码:

  config['cache'] = config['cache']*config['decay_rate'] + (1-config['decay_rate'])*dx*dx
next_x = x - config['learning_rate']*dx/np.sqrt(config['cache']+config['epsilon'])

3. Adam

此算法需要注意的是ppt中的方程是错误的,正确方法如下图,主要区别在于bias correction的部分,不更新m和v,详见Adam: A Method for Stochastic Optimization
还要注意t的更新,此部分也没有显示的写在ppt里。
Adam
代码:

  m = config['m']*config['beta1']+(1-config['beta1'])*dx
v = config['v']*config['beta2']+(1-config['beta2'])*dx*dx
config['t'] += 1
mb = m / (1 - config['beta1']**config['t'])
vb = v / (1 - config['beta2']**config['t'])
next_x = x - config['learning_rate']*mb/(np.sqrt(vb)+config['epsilon'])
config['m'] = m
config['v'] = v

推荐阅读
  • 采用IKE方式建立IPsec安全隧道
    一、【组网和实验环境】按如上的接口ip先作配置,再作ipsec的相关配置,配置文本见文章最后本文实验采用的交换机是H3C模拟器,下载地址如 ... [详细]
  • 方法:1 配置数据库basediros.path.abspath(os.path.dirname(__file__))  #获取当前文件的绝对路径appFlask(__name__ ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 本文介绍如何使用 Android 的 Canvas 和 View 组件创建一个简单的绘图板应用程序,支持触摸绘画和保存图片功能。 ... [详细]
  • 在本教程中,我们将深入探讨如何使用 Python 构建游戏的主程序模块。通过逐步实现各个关键组件,最终完成一个功能完善的游戏界面。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文详细解析了Java中hashCode()和equals()方法的实现原理及其在哈希表结构中的应用,探讨了两者之间的关系及其实现时需要注意的问题。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
  • 本文详细探讨了 org.apache.hadoop.ha.HAServiceTarget 类中的 checkFencingConfigured 方法,包括其功能、应用场景及代码示例。通过实际代码片段,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍如何在Spring Boot项目中集成Redis,并通过具体案例展示其配置和使用方法。包括添加依赖、配置连接信息、自定义序列化方式以及实现仓储接口。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文详细介绍了Python中的可迭代对象、迭代器和生成器的概念及实现方式。通过实例代码展示如何创建和使用这些对象,帮助读者更好地理解和掌握其原理。 ... [详细]
author-avatar
qt70ewi
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有