热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

并发与并行(concurrencyvsparallesim)

最近对计算机中并发(concurrency)和并行(parallesim)这两个词的区别很迷惑,将搜索到的相关内容整理如下。http:www.vaikan.comdocsConcu

最近对计算机中并发(concurrency)和并行(parallesim)这两个词的区别很迷惑,将搜索到的相关内容整理如下。

http://www.vaikan.com/docs/Concurrency-is-not-Parallelism/#slide-7

定义:

并发 Concurrency

将相互独立的执行过程综合到一起的编程技术。

并行 Parallelism

同时执行(通常是相关的)计算任务的编程技术。

 

并发 vs. 并行

并发是指同时处理很多事情。

而并行是指同时能完成很多事情。

两者不同,但相关。

一个重点是组合,一个重点是执行。

并发提供了一种方式让我们能够设计一种方案将问题(非必须的)并行的解决。

并发是一种将一个程序分解成小片段独立执行的程序设计方法。

通信是指各个独立的执行任务间的合作。

这是Go语言采用的模式,包括Erlang等其它语言都是基于这种SCP模式:

C. A. R. Hoare: Communicating Sequential Processes (CACM 1978)

 

第二种:

https://laike9m.com/blog/huan-zai-yi-huo-bing-fa-he-bing-xing,61/

“并发”指的是程序的结构,“并行”指的是程序运行时的状态

即使不看详细解释,也请记住这句话。下面来具体说说:

并行(parallesim)

这个概念很好理解。所谓并行,就是同时执行的意思,无需过度解读。判断程序是否处于并行的状态,就看同一时刻是否有超过一个“工作单位”在运行就好了。所以,单线程永远无法达到并行状态

要达到并行状态,最简单的就是利用多线程和多进程。但是 Python 的多线程由于存在著名的 GIL,无法让两个线程真正“同时运行”,所以实际上是无法到达并行状态的。

并发(concurrency)

要理解“并发”这个概念,必须得清楚,并发指的是程序的“结构”。当我们说这个程序是并发的,实际上,这句话应当表述成“这个程序采用了支持并发的设计”。好,既然并发指的是人为设计的结构,那么怎样的程序结构才叫做支持并发的设计?

正确的并发设计的标准是:使多个操作可以在重叠的时间段内进行(two tasks can start, run, and complete in overlapping time periods)

这句话的重点有两个。我们先看“(操作)在重叠的时间段内进行”这个概念。它是否就是我们前面说到的并行呢?是,也不是。并行,当然是在重叠的时间段内执行,但是另外一种执行模式,也属于在重叠时间段内进行。这就是协程。

使用协程时,程序的执行看起来往往是这个样子:

并发与并行(concurrency vs parallesim)

task1, task2 是两段不同的代码,比如两个函数,其中黑色块代表某段代码正在执行。注意,这里从始至终,在任何一个时间点上都只有一段代码在执行,但是,由于 task1 和 task2 在重叠的时间段内执行,所以这是一个支持并发的设计。与并行不同,单核单线程能支持并发。

 

并发和并行的关系

Different concurrent designs enable different ways to parallelize.

这句话来自著名的talk: Concurrency is not parallelism。它足够concise,以至于不需要过多解释。但是仅仅引用别人的话总是不太好,所以我再用之前文字的总结来说明:并发设计让并发执行成为可能,而并行是并发执行的一种模式

最后,关于Concurrency is not parallelism这个talk再多说点。自从这个talk出来,直接引爆了一堆讨论并发vs并行的文章,并且无一例外提到这个talk,甚至有的文章直接用它的slide里的图片来说明。

 

Although there’s a tendency to think that parallelism means multiple cores, modern computers are parallel on many different levels. The reason why individual cores have been able to get faster every year, until recently, is that they’ve been using all those extra transistors predicted by Moore’s law in parallel, both at the bit and at the instruction level.

Bit-Level Parallelism
Why is a 32-bit computer faster than an 8-bit one? Parallelism. If an 8-bit computer wants to add two 32-bit numbers, it has to do it as a sequence of 8-bit operations. By contrast, a 32-bit computer can do it in one step, handling each of the 4 bytes within the 32-bit numbers in parallel. That’s why the history of computing has seen us move from 8- to 16-, 32-, and now 64-bit architectures. The total amount of benefit we’ll see from this kind of parallelism has its limits, though, which is why we’re unlikely to see 128-bit computers soon.

Instruction-Level Parallelism
Modern CPUs are highly parallel, using techniques like pipelining, out-of-order execution, and speculative execution.
As programmers, we’ve mostly been able to ignore this because, despite the fact that the processor has been doing things in parallel under our feet, it’s carefully maintained the illusion that everything is happening sequentially. This illusion is breaking down, however. Processor designers are no longer able to find ways to increase the speed of an individual core. As we move into a multicore world, we need to start worrying about the fact that instructions aren’t handled sequentially. We’ll talk about this more in Memory Visibility, on page ?.

Data Parallelism
Data-parallel (sometimes called SIMD, for “single instruction, multiple data”) architectures are capable of performing the same operations on a large quantity of data in parallel. They’re not suitable for every type of problem, but they can be extremely effective in the right circumstances. One of the applications that’s most amenable to data parallelism is image processing. To increase the brightness of an image, for example, we increase the brightness of each pixel. For this reason, modern GPUs (graphics processing units) have evolved into extremely powerful data-parallel processors.

Task-Level Parallelism
Finally, we reach what most people think of as parallelism—multiple processors. From a programmer’s point of view, the most important distinguishing feature of a multiprocessor architecture is the memory model, specifically whether it’s shared or distributed.

最关键的一点是,计算机在不同层次上都使用了并行技术。之前我讨论的实际上仅限于 Task-Level 这一层,在这一层上,并行无疑是并发的一个子集。但是并行并非并发的子集,因为在 Bit-Level 和 Instruction-Level 上的并行不属于并发——比如引文中举的 32 位计算机执行 32 位数加法的例子,同时处理 4 个字节显然是一种并行,但是它们都属于 32 位加法这一个任务,并不存在多个任务,也就根本没有并发。

所以,正确的说法是这样:
并行指物理上同时执行,并发指能够让多个任务在逻辑上交织执行的程序设计

按照我现在的理解,并发针对的是 Task-Level 及更高层,并行则不限。这也是它们的区别。

 


推荐阅读
  • 本文探讨了如何通过一系列技术手段提升Spring Boot项目的并发处理能力,解决生产环境中因慢请求导致的系统性能下降问题。 ... [详细]
  • ListView简单使用
    先上效果:主要实现了Listview的绑定和点击事件。项目资源结构如下:先创建一个动物类,用来装载数据:Animal类如下:packagecom.example.simplelis ... [详细]
  • 深入剖析JVM垃圾回收机制
    本文详细探讨了Java虚拟机(JVM)中的垃圾回收机制,包括其意义、对象判定方法、引用类型、常见垃圾收集算法以及各种垃圾收集器的特点和工作原理。通过理解这些内容,开发人员可以更好地优化内存管理和程序性能。 ... [详细]
  • 本文详细探讨了Java中的ClassLoader类加载器的工作原理,包括其如何将class文件加载至JVM中,以及JVM启动时的动态加载策略。文章还介绍了JVM内置的三种类加载器及其工作方式,并解释了类加载器的继承关系和双亲委托机制。 ... [详细]
  • 本文详细介绍了虚拟专用网(Virtual Private Network, VPN)的概念及其通过公共网络(如互联网)构建临时且安全连接的技术特点。文章探讨了不同类型的隧道协议,包括第二层和第三层隧道协议,并提供了针对IPSec、GRE以及MPLS VPN的具体配置指导。 ... [详细]
  • 在寻找轻量级Ruby Web框架的过程中,您可能会遇到Sinatra和Ramaze。两者都以简洁、轻便著称,但它们之间存在一些关键区别。本文将探讨这些差异,并提供详细的分析,帮助您做出最佳选择。 ... [详细]
  • 解决Spring Boot项目创建失败的问题
    在尝试创建新的Spring Boot项目时遇到了一些问题,具体表现为在项目创建过程中的两个关键步骤出现错误。本文将详细探讨这些问题及其解决方案。 ... [详细]
  • springMVC JRS303验证 ... [详细]
  • 解决Windows下创建子进程时代码重复执行的问题
    在Windows系统中,当启动子进程时,主进程的文件会被复制到子进程中。由于导入模块时会执行该模块中的代码,因此可能导致某些代码在主进程和子进程中各执行一次。本文探讨了这一现象的原因及其解决方案。 ... [详细]
  • java文本编辑器,java文本编辑器设计思路
    java文本编辑器,java文本编辑器设计思路 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 本文探讨了如何利用HTML5和JavaScript在浏览器中进行本地文件的读取和写入操作,并介绍了获取本地文件路径的方法。HTML5提供了一系列API,使得这些操作变得更加简便和安全。 ... [详细]
  • 本文详细介绍了如何在 Android 中使用值动画(ValueAnimator)来动态调整 ImageView 的高度,并探讨了相关的关键属性和方法,包括图片填充后的高度、原始图片高度、动画变化因子以及布局重置等。 ... [详细]
  • CentOS 6.8 上安装 Oracle 10.2.0.1 的常见问题及解决方案
    本文记录了在 CentOS 6.8 系统上安装 Oracle 10.2.0.1 数据库时遇到的问题及解决方法,包括依赖库缺失、操作系统版本不兼容、用户权限不足等问题。 ... [详细]
  • Python3 中使用 lxml 模块解析 XPath 数据详解
    XPath 是一种用于在 XML 文档中查找信息的路径语言,同样适用于 HTML 文件的搜索。本文将详细介绍如何利用 Python 的 lxml 模块通过 XPath 技术高效地解析和抓取网页数据。 ... [详细]
author-avatar
书友66599567
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有