热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

背包问题java,背包问题算法

本文目录一览:1、背包问题算法java实现2、

本文目录一览:


  • 1、背包问题算法java实现


  • 2、0-1背包问题java代码


  • 3、_' title='回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_'>回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_


  • 4、java语言,背包问题,从Excel表中读取数据


  • 5、01背包问题变种:从给定的N个正数中选取若干个数之和最接近M的JAVA写法


  • 6、java写背包问题没看懂

背包问题算法java实现

任何语言都是一样的,贪心算法,先按价值除重量排序,一个一个的加到背包里,当超过背包允许的重量后,去掉最后加进去一个,跳过这一个以后再加后面的,如果还是超重,再跳过这个,一直到价值最大化位置。

0-1背包问题java代码

import java.io.BufferedInputStream;

import java.util.Scanner;

public class test {

    public static int[] weight = new int[101];

    public static int[] value = new int[101];

    public static void main(String[] args) {

        Scanner cin = new Scanner(new BufferedInputStream(System.in));

        int n = cin.nextInt();

        int W = cin.nextInt();

        for (int i = 0; i  n; ++i) {

            weight[i] = cin.nextInt();

            value[i] = cin.nextInt();

        }

        cin.close();

        System.out.println(solve(0, W, n)); // 普通递归

        System.out.println("=========");

        System.out.println(solve2(weight, value, W)); // 动态规划表

    }

    public static int solve(int i, int W, int n) {

        int res;

        if (i == n) {

            res = 0;

        } else if (W  weight[i]) {

            res = solve(i + 1, W, n);

        } else {

            res = Math.max(solve(i + 1, W, n), solve(i + 1, W - weight[i], n) + value[i]);

        }

        return res;

    }

    public static int solve2(int[] weight, int[] value, int W) {

        int[][] dp = new int[weight.length + 1][W + 1];

        for (int i = weight.length - 1; i = 0; --i) {

            for (int j = W; j = 0; --j) {

                dp[i][j] = dp[i + 1][j]; // 从右下往左上,i+1就是刚刚记忆过的背包装到i+1重量时的最大价值

                if (j + weight[i] = W) { // dp[i][j]就是背包已经装了j的重量时,能够获得的最大价值

                    dp[i][j] = Math.max(dp[i][j], value[i] + dp[i + 1][j + weight[i]]);

// 当背包重量为j时,要么沿用刚刚装的,本次不装,最大价值dp[i][j],要么就把这个重物装了,那么此时背包装的重量为j+weight[i],

// 用本次的价值value[i]加上背包已经装了j+weight[i]时还能获得的最大价值,因为是从底下往上,刚刚上一步算过,可以直接用dp[i+1][j+weight[i]]。

// 然后选取本次不装weight[i]重物时获得的最大价值以及本次装weight[i]重物获得的最大价值两者之间的最大值

                }

            }

        }

        return dp[0][0];

    }

}

回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_

因为你把n和c 定义为static ,而且初始化为0,。数组也为静态的,一个类中静态的变量在这个类加载的时候就会执行,所以当你这类加载的时候,你的数组static int[] v = new int[n];

static int[] w = new int[n];

就已经初始化完毕,而且数组大小为0。在main方法里动态改变n的值是改变不了已经初始化完毕的数组的大小的,因为组已经加载完毕。

我建议你可以在定义n,c是就为其赋初值。比如(static int n=2 static int c=3)

java语言,背包问题,从Excel表中读取数据

基本概念

问题雏形

01背包题目的雏形是:

有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放。

其状态转移方程是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

对于这方方程其实并不难理解,方程之中,现在需要放置的是第i件物品,这件物品的体积是c[i],价值是w[i],因此f[i-1][v]代表的就是不将这件物品放入背包,而f[i-1][v-c[i]]+w[i]则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。

理解了这个方程后,将方程代入实际题目的应用之中,可得

for (i = 1; i = n; i++)

for (j = v; j = c[i]; j--)//在这里,背包放入物品后,容量不断的减少,直到再也放不进了

f[i][j] = max(f[i - 1][j], f[i - 1][j - c[i]] + w[i]);

问题描述

求出获得最大价值的方案。

注意:在本题中,所有的体积值均为整数。

算法分析

对于背包问题,通常的处理方法是搜索。

用递归来完成搜索,算法设计如下:

int make(int i, int j)//处理到第i件物品,剩余的空间为j 初始时i=m , j=背包总容量

{

if (i == 0) return 0;

if (j = c[i])//(背包剩余空间可以放下物品 i )

{

int r1 = make(i - 1, j - w[i]);//第i件物品放入所能得到的价值

int r2 = make(i - 1, j);//第i件物品不放所能得到的价值

return min(r1, r2);

}

return make(i - 1, j);//放不下物品 i

}

这个算法的时间复杂度是O(n^2),我们可以做一些简单的优化。

由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单的“以空间换时间”。

我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。

同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。

解决方案

考虑用动态规划的方法来解决,这里的:

阶段:在前N件物品中,选取若干件物品放入背包中

状态:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值

决策:第N件物品放或者不放

由此可以写出动态转移方程:

我们用f[i][j]表示在前 i 件物品中选择若干件放在已用空间为 j 的背包里所能获得的最大价值

f[i][j] = max(f[i - 1][j - W[i]] + P[i], f[i - 1][j]);//j = W[ i ]

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入已用的容量为c的背包中”,此时能获得的最大价值就是f[c]再加上通过放入第i件物品获得的价值w。

这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]

算法设计如下:

int main()

{

cin n v;

for (int i = 1; i = n; i++)

cin c[i];//价值

for (int i = 1; i = n; i++)

cin w[i];//体积

for (int i = 1; i = n; i++)

f[i][0] = 0;

for (int i = 1; i = n; i++)

for (int j = 1; j = v; j++)

if (j = w[i])//背包容量够大

f[i][j] = max(f[i - 1][j - w[i]] + c[i], f[i - 1][j]);

else//背包容量不足

f[i][j] = f[i - 1][j];

cout f[n][v] endl;

return 0;

}

由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。

01背包问题变种:从给定的N个正数中选取若干个数之和最接近M的JAVA写法

BIAS0:= (C-MA(C,2))/MA(C,2)*100;

BIAS1 := (C-MA(C,12))/MA(C,12)*100;

BIAS2 := (C-MA(C,26))/MA(C,26)*100;

BIAS3 := (C-MA(C,48))/MA(C,48)*100;

HXL:=V/CAPITAL*100;

D1:=INDEXC;

D2:=MA(D1,56);

DR2:=D1/D20.94;

E1:=(C-HHV(C,12))/HHV(C,12)*10;

E2:=(C-REF(C,26))/REF(C,26)*10;

java写背包问题没看懂

m[][] 就是一个二维数组。

你平时看见的a[] 这样的数组是用来定义一维数组的,里面放的东西你应该明白。二维数组其实和一维数组差不多,只不过二维数组的m[]放的是另外一个m1[]这样的数组。两个数组就从线变成了面,类似于XY坐标图了。这就是二维数组,面上的关系。


推荐阅读
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 本文基于Java官方文档进行了适当修改,旨在介绍如何实现一个能够同时处理多个客户端请求的服务端程序。在前文中,我们探讨了单客户端访问的服务端实现,而本篇将深入讲解多客户端环境下的服务端设计与实现。 ... [详细]
  • 1、编写一个Java程序在屏幕上输出“你好!”。programmenameHelloworld.javapublicclassHelloworld{publicst ... [详细]
  • 问题场景用Java进行web开发过程当中,当遇到很多很多个字段的实体时,最苦恼的莫过于编辑字段的查看和修改界面,发现2个页面存在很多重复信息,能不能写一遍?有没有轮子用都不如自己造。解决方式笔者根据自 ... [详细]
  • 本文旨在探讨Swift中的Closure与Objective-C中的Block之间的区别与联系,通过定义、使用方式以及外部变量捕获等方面的比较,帮助开发者更好地理解这两种机制的特点及应用场景。 ... [详细]
  • Java多线程售票案例分析
    本文通过一个售票系统的实例,深入探讨了Java中的多线程技术及其在资源共享和并发控制中的应用。售票过程涉及查询、收款、找零和出票等多个步骤,其中对总票数的管理尤为关键。 ... [详细]
  • 编码unicode解决了语言不通的问题.但是.unicode又有一个新问题.由于unicode是万国码.把所有国家的文字都编进去了.这就导致一个unicode占用的空间会很大.原来 ... [详细]
  • 探讨 try-finally 结构中 finally 块的执行情况
    本文深入分析了 Java 中 try-finally 结构的执行机制,特别是探讨了在不同情况下 finally 块是否会得到执行。 ... [详细]
  • D17:C#设计模式之十六观察者模式(Observer Pattern)【行为型】
    一、引言今天是2017年11月份的最后一天,也就是2017年11月30日,利用今天再写一个模式,争取下个月(也就是12月份& ... [详细]
  • 深入理解线程池及其基本实现
    本文探讨了线程池的概念、优势及其在Java中的应用。通过实例分析不同类型的线程池,并指导如何构建一个简易的线程池。 ... [详细]
  • 本文详细介绍了在Luat OS中如何实现C与Lua的混合编程,包括在C环境中运行Lua脚本、封装可被Lua调用的C语言库,以及C与Lua之间的数据交互方法。 ... [详细]
  • 尽管在WPF中工作了一段时间,但在菜单控件的样式设置上遇到了一些基础问题,特别是关于如何正确配置前景色和背景色。 ... [详细]
  • 想把一组chara[4096]的数组拷贝到shortb[6][256]中,尝试过用循环移位的方式,还用中间变量shortc[2048]的方式。得出的结论:1.移位方式效率最低2. ... [详细]
  • 本文详细探讨了在Java编程语言中,构造函数、静态代码块和构造代码块的执行顺序。首先明确了静态代码块、构造代码块以及构造函数方法体的执行优先级,随后深入分析了构造函数体执行前的具体步骤,包括父类构造器的调用、非静态变量的初始化等。 ... [详细]
  • 本文详细探讨了在Java中如何将图像对象转换为文件和字节数组(Byte[])的技术。虽然网络上存在大量相关资料,但实际操作时仍需注意细节。本文通过使用JMSL 4.0库中的图表对象作为示例,提供了一种实用的方法。 ... [详细]
author-avatar
手机用户2502940417_253
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有