热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

背包问题java,背包问题算法

本文目录一览:1、背包问题算法java实现2、

本文目录一览:


  • 1、背包问题算法java实现


  • 2、0-1背包问题java代码


  • 3、_' title='回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_'>回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_


  • 4、java语言,背包问题,从Excel表中读取数据


  • 5、01背包问题变种:从给定的N个正数中选取若干个数之和最接近M的JAVA写法


  • 6、java写背包问题没看懂

背包问题算法java实现

任何语言都是一样的,贪心算法,先按价值除重量排序,一个一个的加到背包里,当超过背包允许的重量后,去掉最后加进去一个,跳过这一个以后再加后面的,如果还是超重,再跳过这个,一直到价值最大化位置。

0-1背包问题java代码

import java.io.BufferedInputStream;

import java.util.Scanner;

public class test {

    public static int[] weight = new int[101];

    public static int[] value = new int[101];

    public static void main(String[] args) {

        Scanner cin = new Scanner(new BufferedInputStream(System.in));

        int n = cin.nextInt();

        int W = cin.nextInt();

        for (int i = 0; i  n; ++i) {

            weight[i] = cin.nextInt();

            value[i] = cin.nextInt();

        }

        cin.close();

        System.out.println(solve(0, W, n)); // 普通递归

        System.out.println("=========");

        System.out.println(solve2(weight, value, W)); // 动态规划表

    }

    public static int solve(int i, int W, int n) {

        int res;

        if (i == n) {

            res = 0;

        } else if (W  weight[i]) {

            res = solve(i + 1, W, n);

        } else {

            res = Math.max(solve(i + 1, W, n), solve(i + 1, W - weight[i], n) + value[i]);

        }

        return res;

    }

    public static int solve2(int[] weight, int[] value, int W) {

        int[][] dp = new int[weight.length + 1][W + 1];

        for (int i = weight.length - 1; i = 0; --i) {

            for (int j = W; j = 0; --j) {

                dp[i][j] = dp[i + 1][j]; // 从右下往左上,i+1就是刚刚记忆过的背包装到i+1重量时的最大价值

                if (j + weight[i] = W) { // dp[i][j]就是背包已经装了j的重量时,能够获得的最大价值

                    dp[i][j] = Math.max(dp[i][j], value[i] + dp[i + 1][j + weight[i]]);

// 当背包重量为j时,要么沿用刚刚装的,本次不装,最大价值dp[i][j],要么就把这个重物装了,那么此时背包装的重量为j+weight[i],

// 用本次的价值value[i]加上背包已经装了j+weight[i]时还能获得的最大价值,因为是从底下往上,刚刚上一步算过,可以直接用dp[i+1][j+weight[i]]。

// 然后选取本次不装weight[i]重物时获得的最大价值以及本次装weight[i]重物获得的最大价值两者之间的最大值

                }

            }

        }

        return dp[0][0];

    }

}

回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_

因为你把n和c 定义为static ,而且初始化为0,。数组也为静态的,一个类中静态的变量在这个类加载的时候就会执行,所以当你这类加载的时候,你的数组static int[] v = new int[n];

static int[] w = new int[n];

就已经初始化完毕,而且数组大小为0。在main方法里动态改变n的值是改变不了已经初始化完毕的数组的大小的,因为组已经加载完毕。

我建议你可以在定义n,c是就为其赋初值。比如(static int n=2 static int c=3)

java语言,背包问题,从Excel表中读取数据

基本概念

问题雏形

01背包题目的雏形是:

有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放。

其状态转移方程是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

对于这方方程其实并不难理解,方程之中,现在需要放置的是第i件物品,这件物品的体积是c[i],价值是w[i],因此f[i-1][v]代表的就是不将这件物品放入背包,而f[i-1][v-c[i]]+w[i]则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。

理解了这个方程后,将方程代入实际题目的应用之中,可得

for (i = 1; i = n; i++)

for (j = v; j = c[i]; j--)//在这里,背包放入物品后,容量不断的减少,直到再也放不进了

f[i][j] = max(f[i - 1][j], f[i - 1][j - c[i]] + w[i]);

问题描述

求出获得最大价值的方案。

注意:在本题中,所有的体积值均为整数。

算法分析

对于背包问题,通常的处理方法是搜索。

用递归来完成搜索,算法设计如下:

int make(int i, int j)//处理到第i件物品,剩余的空间为j 初始时i=m , j=背包总容量

{

if (i == 0) return 0;

if (j = c[i])//(背包剩余空间可以放下物品 i )

{

int r1 = make(i - 1, j - w[i]);//第i件物品放入所能得到的价值

int r2 = make(i - 1, j);//第i件物品不放所能得到的价值

return min(r1, r2);

}

return make(i - 1, j);//放不下物品 i

}

这个算法的时间复杂度是O(n^2),我们可以做一些简单的优化。

由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单的“以空间换时间”。

我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。

同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。

解决方案

考虑用动态规划的方法来解决,这里的:

阶段:在前N件物品中,选取若干件物品放入背包中

状态:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值

决策:第N件物品放或者不放

由此可以写出动态转移方程:

我们用f[i][j]表示在前 i 件物品中选择若干件放在已用空间为 j 的背包里所能获得的最大价值

f[i][j] = max(f[i - 1][j - W[i]] + P[i], f[i - 1][j]);//j = W[ i ]

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入已用的容量为c的背包中”,此时能获得的最大价值就是f[c]再加上通过放入第i件物品获得的价值w。

这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]

算法设计如下:

int main()

{

cin n v;

for (int i = 1; i = n; i++)

cin c[i];//价值

for (int i = 1; i = n; i++)

cin w[i];//体积

for (int i = 1; i = n; i++)

f[i][0] = 0;

for (int i = 1; i = n; i++)

for (int j = 1; j = v; j++)

if (j = w[i])//背包容量够大

f[i][j] = max(f[i - 1][j - w[i]] + c[i], f[i - 1][j]);

else//背包容量不足

f[i][j] = f[i - 1][j];

cout f[n][v] endl;

return 0;

}

由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。

01背包问题变种:从给定的N个正数中选取若干个数之和最接近M的JAVA写法

BIAS0:= (C-MA(C,2))/MA(C,2)*100;

BIAS1 := (C-MA(C,12))/MA(C,12)*100;

BIAS2 := (C-MA(C,26))/MA(C,26)*100;

BIAS3 := (C-MA(C,48))/MA(C,48)*100;

HXL:=V/CAPITAL*100;

D1:=INDEXC;

D2:=MA(D1,56);

DR2:=D1/D20.94;

E1:=(C-HHV(C,12))/HHV(C,12)*10;

E2:=(C-REF(C,26))/REF(C,26)*10;

java写背包问题没看懂

m[][] 就是一个二维数组。

你平时看见的a[] 这样的数组是用来定义一维数组的,里面放的东西你应该明白。二维数组其实和一维数组差不多,只不过二维数组的m[]放的是另外一个m1[]这样的数组。两个数组就从线变成了面,类似于XY坐标图了。这就是二维数组,面上的关系。


推荐阅读
  • 不确定性|放入_华为机试题 HJ9提取不重复的整数
    不确定性|放入_华为机试题 HJ9提取不重复的整数 ... [详细]
  • 开发笔记:9.八大排序
    开发笔记:9.八大排序 ... [详细]
  • 本文详细介绍了Java中的输入输出(IO)流,包括其基本概念、分类及应用。IO流是用于在程序和外部资源之间传输数据的一套API。根据数据流动的方向,可以分为输入流(从外部流向程序)和输出流(从程序流向外部)。此外,还涵盖了字节流和字符流的区别及其具体实现。 ... [详细]
  • 本文介绍了一种从与src同级的config目录中读取属性文件内容的方法。通过使用Java的Properties类和InputStream,可以轻松加载并获取指定键对应的值。 ... [详细]
  • 本文深入探讨了HTTP请求和响应对象的使用,详细介绍了如何通过响应对象向客户端发送数据、处理中文乱码问题以及常见的HTTP状态码。此外,还涵盖了文件下载、请求重定向、请求转发等高级功能。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 本文详细探讨了HTML表单中GET和POST请求的区别,包括它们的工作原理、数据传输方式、安全性及适用场景。同时,通过实例展示了如何在Servlet中处理这两种请求。 ... [详细]
  • 在软件开发过程中,MD5加密是一种常见的数据保护手段。本文将详细介绍如何在C#中使用两种不同的方式来实现MD5加密:字符串加密和流加密。 ... [详细]
  • 本文探讨了在C++中如何有效地清空输入缓冲区,确保程序只处理最近的输入并丢弃多余的输入。我们将介绍一种不阻塞的方法,并提供一个具体的实现方案。 ... [详细]
  • 采用IKE方式建立IPsec安全隧道
    一、【组网和实验环境】按如上的接口ip先作配置,再作ipsec的相关配置,配置文本见文章最后本文实验采用的交换机是H3C模拟器,下载地址如 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本题旨在通过给定的评级信息,利用拓扑排序和并查集算法来确定全球 Tetris 高手排行榜。题目要求判断是否可以根据提供的信息生成一个明确的排名表,或者是否存在冲突或信息不足的情况。 ... [详细]
  • 本文将深入探讨如何在不依赖第三方库的情况下,使用 React 处理表单输入和验证。我们将介绍一种高效且灵活的方法,涵盖表单提交、输入验证及错误处理等关键功能。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
author-avatar
手机用户2502940417_253
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有