热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

Bagging和Boosting原理及区别

Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法

Bagging 和 Boosting 都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。

首先介绍 Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本)。


1、Bagging (bootstrap aggregating)

Bagging 即套袋法,其算法过程如下:

A)从原始样本集中抽取训练集。每轮从原始样本集中使用 Bootstraping 的方法抽取 n 个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行 k 轮抽取,得到 k 个训练集。(k 个训练集之间是相互独立的)

B)每次使用一个训练集得到一个模型,k 个训练集共得到 k 个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)

C)对分类问题:将上步得到的 k 个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

2、Boosting

其主要思想是将弱分类器组装成一个强分类器。在 PAC(概率近似正确)学习框架下,则一定可以将弱分类器组装成一个强分类器。

关于 Boosting 的两个核心问题:

1)在每一轮如何改变训练数据的权值或概率分布?

通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。

2)通过什么方式来组合弱分类器?

通过加法模型将弱分类器进行线性组合,比如 AdaBoost 通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器的权值。

而提升树通过拟合残差的方式逐步减小残差,将每一步生成的模型叠加得到最终模型。

3、Bagging,Boosting 二者之间的区别

Bagging 和 Boosting 的区别:

1)样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

2)样例权重:

Bagging:使用均匀取样,每个样例的权重相等

Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。

3)预测函数:

Bagging:所有预测函数的权重相等。

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

4)并行计算:

Bagging:各个预测函数可以并行生成

Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

4、总结

这两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果,将不同的分类算法套入到此类算法框架中一定程度上会提高了原单一分类器的分类效果,但是也增大了计算量。

下面是将决策树与这些算法框架进行结合所得到的新的算法:

1)Bagging + 决策树 = 随机森林

2)AdaBoost + 决策树 = 提升树

3)Gradient Boosting + 决策树 = GBDT

参考:https://www.cnblogs.com/liuwu265/p/4690486.html


推荐阅读
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 本文介绍了一段使用jQuery实现的用户注册页面表单验证代码,适用于前端开发人员学习和参考。该示例结合了HTML、CSS和JavaScript,确保用户输入的数据格式正确。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 本文汇集了一系列具有强烈设计感的网站模板,特别是来自知名平台WrapBootstrap的响应式网站模板。这些模板不仅美观,而且功能强大,适合各种类型的网站建设需求。 ... [详细]
  • Spring Boot 中静态资源映射详解
    本文深入探讨了 Spring Boot 如何简化 Web 应用中的静态资源管理,包括默认的静态资源映射规则、WebJars 的使用以及静态首页的处理方法。通过本文,您将了解如何高效地管理和引用静态资源。 ... [详细]
  • 本文探讨了2019年前端技术的发展趋势,包括工具化、配置化和泛前端化等方面,并提供了详细的学习路线和职业规划建议。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 本文详细介绍了如何使用Maven高效管理多模块项目,涵盖项目结构设计、依赖管理和构建优化等方面。通过具体的实例和配置说明,帮助开发者更好地理解和应用Maven在复杂项目中的优势。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 深入理解ExtJS:从入门到精通
    本文详细介绍了ExtJS的功能及其在大型企业前端开发中的应用。通过实例和详细的文件结构解析,帮助初学者快速掌握ExtJS的核心概念,并提供实用技巧和最佳实践。 ... [详细]
  • 本文深入探讨了CART(分类与回归树)的基本原理及其在随机森林中的应用。重点介绍了CART的分裂准则、防止过拟合的方法、处理样本不平衡的策略以及其在回归问题中的应用。此外,还详细解释了随机森林的构建过程、样本均衡处理、OOB估计及特征重要性的计算。 ... [详细]
author-avatar
iainabaobei_151
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有