热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

八个最好的开源机器学习框架和库

八个最好的开源机器学习框架和库,Go语言社区,Golang程序员人脉社

人工智能(AI)技术正迅速改变我们生活中几乎每一个领域。从我们如何交流到,用于交通的手段,我们似乎越来越沉迷于人工智能。由于AI快速发展,大量的人才和资源致力于加速技术的发展。利用以下最好的开源AI技术,可将你的机器学习项目提升到一个新的水平。

1.TensorFlow

TensorFlow最初于2015年发布,是一款开源机器学习框架,易于在各种平台上使用和部署。它是机器学习中维护得最好和广泛使用的框架之一。

谷歌为支持其研究和生产目标而创建,目前TensorFlow已被多家公司广泛使用,包括Dropbox,eBay,Intel,Twitter和Uber等。TensorFlow可用于Python,C ++,Haskell,Java,Go,Rust以及Java等。当然,还可以找到其他编程语言的第三方软件包。该框架允许你使用流程图开发神经网络,甚至是其他计算模型。

2.Keras

Keras是一个开源软件库,最初于2015年发布,旨在简化深度学习模型的创建。它用Python编写,可以部署在其他人工智能技术之上,如TensorFlow,微软Cognitive Toolkit(CNTK)和Theano。

Keras以其用户友好性,模块化和易扩展性而闻名。如果你需要一个机器学习库,可以实现简单快速的原型设计,同时支持卷积网络和循环神经网络,并且在CPU和GPU上运行达到最佳状态,这非常合适。

3.scikit-learn

最初于2007年发布的scikit-learn是为机器学习开发的开源库。这个传统的框架是用Python编写的,并且包含了几种机器学习模型,包括分类,回归,聚类和降维。

Scikit-learn是在另外三个开源项目Matplotlib,NumPy和SciPy上设计的,它专注于数据挖掘和数据分析。

4.微软Cognitive Toolkit

最初于2016年发布的Microsoft认知工具包(以前称为CNTK)是一种AI解决方案,可让你将机器学习项目提升到一个新的水平。

微软Cognitive Toolkit的一些重要功能包括高度优化的组件,能够处理来自Python,C ++或Brain的数据,提供高效的资源使用,轻松与微软Azure集成以及与NumPy进行互操作。

5.Theano

Theano最初于2007年发布,它是一个开源的Python库,允许你轻松地构建各种机器学习模型。由于它是最古老的库之一,它被视为一种激发深度学习发展的行业标准。

它的核心是可以简化定义,优化和评估数学表达式的过程。Theano能够将你的结构转换为与NumPy,BLAS等高效本机库以及本地代码(C ++)集成的非常高效的代码。

此外,它针对GPU进行了优化,提供了高效的符号差异化,并且具有广泛的代码测试功能。

6.Caffe

最初于2017年发布的Caffe(用于快速特征嵌入的卷积体系结构)是一种专注于表现力,速度和模块性的机器学习框架。开源框架是用C ++编写的,并附带一个Python接口。

Caffe的主要特点包括一个富有表现力的架构,它鼓励创新,广泛的代码有助于积极的发展,加速行业部署的快速性能,以及一个充满活力的社区来促进增长。

7.Torch

Torch最初于2002年发布,它是一个机器学习库,提供广泛的深度学习算法。开源框架在处理机器学习项目时为你提供了优化的灵活性和速度,而不会在过程中造成不必要的复杂性。

它使用脚本语言Lua编写,并附带一个底层C实现。Torch的一些主要功能包括N维数组,线性代数例程,数值优化例程,高效GPU支持以及对iOS和Android平台的支持。

8.Accord.NET

Accord.NET最初于2010年发布,是一个完全用C#编写的机器学习框架。开源框架适用于生产级科学计算。 凭借其广泛的库,你可以在人工神经网络,统计数据处理,图像处理等中构建各种应用。

结论

在开始构建机器学习应用之前,从众多选项中选择一项技术可能是一项艰巨的任务。因此,在作出最终决定之前评估几个选项非常重要。此外,学习各种机器学习技术如何工作可以帮助你做出正确的决定。


推荐阅读
  • Python 领跑!2019年2月编程语言排名更新
    根据最新的编程语言流行指数(PYPL)排行榜,Python 在2019年2月的份额达到了26.42%,稳坐榜首位置。 ... [详细]
  • 随着技术的发展,Python因其高效性和灵活性,在多个领域得到了广泛应用,特别是在大数据处理和网络爬虫开发方面。本文将探讨学习Python是否能够胜任大数据和网络爬虫工程师的工作,并分析其职业前景。 ... [详细]
  • 2017年软件开发领域的七大变革
    随着技术的不断进步,2017年对软件开发人员而言将充满挑战与机遇。本文探讨了开发人员需要适应的七个关键变化,包括人工智能、聊天机器人、容器技术、应用程序版本控制、云测试环境、大众开发者崛起以及系统管理的云迁移。 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
  • 本文是对《敏捷软件开发:原则、模式与实践》一书的深度解析,书中不仅探讨了敏捷方法的核心理念及其应用,还详细介绍了面向对象设计的原则、设计模式的应用技巧及UML的有效使用。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 深入了解Python中的函数定义
    本文详细探讨了Python中函数定义的核心概念,包括基本语法、不同类型的函数参数、递归函数、闭包以及匿名函数等,旨在帮助读者全面掌握Python函数的应用。 ... [详细]
  • 软件测试行业深度解析:迈向高薪的必经之路
    本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ... [详细]
  • JUnit下的测试和suite
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文介绍如何使用JavaScript中的for循环来创建一个九九乘法表,适合初学者学习循环结构的应用。 ... [详细]
  • 探索《冯诺依曼传》:天才与时代的交响
    本文深入探讨了《冯诺依曼传》,通过分析这位20世纪杰出科学家的生平,揭示其对现代科技及理论科学的深远影响。 ... [详细]
  • 6月2日,中央电化教育馆与潍坊科技学院联合举办的“全国创客教育专题培训班”在潍坊科技学院拉开帷幕,旨在提升全国范围内的创客教育水平。 ... [详细]
author-avatar
Hb何逸秋yB
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有