热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

BAT的数据红利,催生AI时代的敏捷计算力

人工智能开放组织OpenAI于2018年5月发布的分析表明,人工智能训练任务中使用的算力,自2012年以来呈指数级增长,目前速度为每3.5

 

 

人工智能开放组织OpenAI 于2018年5月发布的分析表明,人工智能训练任务中使用的算力,自 2012 年以来呈指数级增长,目前速度为每 3.5 个月翻一倍,而相比之下的摩尔定律则是每 18 个月翻倍。自 2012 年以来,人们对于算力的需求增长了超过30万倍。在此期间,硬件算力的提升一直是人工智能快速发展的重要因素。

人工智能对于算力需求的飙升,很大程度上是互联网公司的数据红利造成的。9月12日,浪潮联合IDC正式对外公布《2018中国AI计算力发展报告》摘要版,报告对中国AI计算力发展作出了综合评估。报告评估杭州、北京、深圳、上海、合肥为中国AI计算力城市发展排名前五位的城市,其中杭州、北京和深圳都是BAT们的聚集地。

浪潮服务器产品部副总经理陈彦灵在2018杭州·云栖大会上介绍,浪潮提出的JDM模式,核心就是敏捷设计、敏捷开发、敏捷制造,敏捷设计为前期的顶层设计、敏捷开发为设计过程中早期的POC以及后期不断验证和迭代更新、敏捷制造为快速交付。JDM最早是与互联网公司合作而产生,正因为BAT的数据红利,才产生了AI时代的大规模敏捷计算力。

与BAT的敏捷合作

互联网公司的规模越大,导致数据的集中度越高,对AI计算力的需求也就越高。杭州的阿里、网易,北京的百度、京东、今日头条,深圳的腾讯,都是造成当地AI计算力需求激增的重要原因,从而也导致对于服务器需求的暴增。

JDM模式下,浪潮研发团队与互联网公司一起,从原型设计、样品开发到共同验证,再到小批量出货和大规模部署,都由双方联合完成。JDM类似于软件的迭代开发,互联网公司的想法可能一开始并没有想清楚,在联合开发的过程中不断调整再最后定型。JDM大幅提升了硬件开发的敏捷性,极大缩短了硬件产品开发的周期。JDM模式背后是浪潮柔性生产制造体系,位于济南的浪潮信息化高端装备智能工厂,集智能化、自动化、模块化、数字化、精益柔性制造于一体,产品交付周期从18天缩短至3到7天。

陈彦灵介绍,浪潮与阿里从2012年开始合作,经历了三个阶段。第一个阶段,从采购标准服务器开始,随着采购的规模越来越大,特别阿里云出现以后,阿里的业务不仅仅是服务于国内市场,还要服务全球用户,这时候对设备的需求量非常大。

第二个阶段,浪潮与阿里开始合作定制化硬件,截至目前约有超过上百个套餐的定制,定制的范围非常广。到现在为目,双方合作处于第三个阶段,已经从浅层的产品定制进入到深层的定制,这个定制就是所谓的JDM模式。到底JDM和传统的标准化服务器有什么差异?实际上因为互联网公司的设备购买量足够大,对设备的能效比、性能、技术先进性的诉求越来越高,传统的服务器无法满足要求,所以浪潮就开始顶层设计,根据客户的构思,用敏捷设计、敏捷开发、敏捷制造的方式,快速为互联网公司交付产品。

陈彦灵强调,JDM模式的创新,在于运营、交付和管理模式的创新。因为互联网公司的服务器采购,每年在几十万台的规模,如果按照传统的下单再采购方式,很难解决时效性的要求。而浪潮、阿里和上下游合作厂商一起开发的JDM合作模式,从研发、设计层面进行深入的合作,解决了互联网公司的挑战。

加速传统企业数字化转型

除了阿里,浪潮也与百度、网易、腾讯等互联网公司进行了深度合作,极大满足了他们的业务需求。

据了解,互联网巨头中的AI服务器有90%来自浪潮,浪潮与科大讯飞、奇虎360、搜狗、今日头条、Face++等人工智能公司在系统与应用方面的深入紧密合作。随着互联网的思维模式,包括快速变化、快速创新等,对传统企业数字化转型的影响逐渐加深,并正向传统企业赋能。

浪潮联合百度为行业用户深度定制的软硬一体化的AI应用解决方案“ABC一体机”,采用了百度的DL框架、成熟的算法模型和和云管理技术,以及浪潮的AI计算硬件平台,覆盖了模型训练Training和线上推理Inference两类需求,是一款开箱即用的交钥匙解决方案。首钢用ABC一体机对10000张钢材图片进行预测,钢板缺陷分类模型的准确率达99.98%,与人工专业检测结果十分接近。

浪潮多年来累积了丰富的行业级、企业级的服务洞察及经验,实现了对2B行业客户的成体系覆盖。基于丰富的服务经验和洞察,浪潮可以将互联网和2B企业级的技术模式进行有效整合。

陈彦灵强调,浪潮现在不仅仅是设备制造商,更多是与企业一起进行合作创新,把来自互联网公司的优秀硬件方案推向传统行业,帮助传统企业加快数字化转型。而在国际市场,浪潮也正在通过JDM模式拓展全球范围的CSP客户。未来,浪潮将通过资源池化和模块化提供产品设计基线复用效率和定制化解决方案交付能力,解决计算力的供给挑战。

AI算力需求大爆发

现在,整个社会都在进行数字化转型,部分已经开始加速数字化转型。在转型过程中,IT基础设施的支撑非常重要。浪潮AI&HPC产品部AI首席架构师张清在2018杭州·云栖大会上表示,过去20年基本上服务器形态没有太大变化,最近随着AI边缘计算出来后,未来服务器将出现爆炸式增长。

由于没有一个通用的产品可以满足所有的需求,浪潮主要融合、开放、敏捷和高效四个维度,解决这个问题:

融合,即IT领域内计算、存储和网络三类设备的融合。现在的云计算概念已经从原来的单一的计算资源云化变成了计算、存储和网络三类资源的整体云化;而IT和CT的融合,传统的电信运营商正在前所未有的速度部署SDN软件定义网络和NFV网络功能虚拟化,用标准服务器来替代原来的专用网络设备;IT和OT的融合,很多企业开始将信息网络和物联网打通、链接和融合,打通了需求研发、生产和服务,将定制订单和智能制造结合起来,实现了定制化产品研发和大规模订单快速交付。

开放,无论在软件还是硬件领域,开放都已经成为主旋律。过去几年,软件领域的Linux、OpenStack,以及硬件领域的OCP、ODCC、Open19等开放社区的发展都引人注目,开放的软硬件已经形成完整的产业体系,覆盖了云计算、大数据、AI等各个应用领域,成为计算产业发展的重要趋势,开放技术为企业建设新型IT基础架构提供更好的选择。

敏捷,主要指业务层面的敏捷需要IT架构具备快速的交付能力。数字化时代,企业业务的创新速度将不断加快,IT基础架构需要更快、更准确的响应企业业务需求,需要以企业业务为中心,重新组织IT系统建设流程。企业积极部署云计算、存储虚拟化、网络虚拟化以及各类硬件重构技术,将计算、存储和网络等传统计算设备实现资源化、动态可伸缩,从而达到技术层面的敏捷,让IT基础架构能够根据业务应用的需求随需而变。

高效,则指包括基础架构在内的IT将是企业业务战略的支持和构成部分,IT投资将更为理性,对于投资回报率、业务支持程度等需要做出更为细致和科学的考量。

浪潮在AI领域的布局包括硬件、软件、算法和生产管理平台,也从融合、开放、敏捷和高效等维度,解决企业的AI算力需求。张清强调,AI算法对于算力的需求,远高于传统的商业智能、数据分析等算法,虽然当前AI算法在整个企业算法中所占比例较小,但对算力的需求却非常高。特别是金融科技和互联网金融、智能汽车和车联网、智能制造和工业互联网等新的应用场景,对于AI算力的需求激增,造成了传统企业的算力荒。

目前,浪潮侧重在数据中心的产品布局,但也看到边缘计算的巨大需求。随着物联网的发展,行业对边缘计算的需求也在增长,浪潮也开始对边缘计算有所布局。比如,浪潮也在研究无人驾驶,与智能汽车企业合作无人驾驶端上的芯片,打通从云端到数据终端再到边缘端的通路。在边缘侧,浪潮正在对通信、零售和AI新应用等进行布局,AI新应用包括语音识别一体机、视频监控等,而传统的CDN也在浪潮的研发范围中,这是因为5G和AI的发展对于CDN也产生了新的要求。

多年来AI基础研究的积累才刚刚在商业领域爆发出来,AI正在驱动全球的数字化转型,正在倒逼全球企业、政府和组织的业务变革。而AI也在倒逼计算力形态的变革,大规模的敏捷计算力正在成为GDP的新增长驱动力。可以说,大规模的敏捷计算力,正在成为新时代的生产力。(文/宁川)


推荐阅读
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 阅读本文大约需要3分钟。微信8.0版本的发布带来了许多令人振奋的新功能,如烟花特效和改进的悬浮窗,引发了用户的热烈反响。 ... [详细]
  • 通过与阿里云的合作,牛客网成功解决了跨国视频面试中的网络卡顿问题,为求职者和面试官提供了更加流畅的沟通体验。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
  • 本文详细介绍了Python编程语言的学习路径,涵盖基础语法、常用组件、开发工具、数据库管理、Web服务开发、大数据分析、人工智能、爬虫开发及办公自动化等多个方向。通过系统化的学习计划,帮助初学者快速掌握Python的核心技能。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • vivo Y5s配备了联发科Helio P65八核处理器,这款处理器采用12纳米工艺制造,具备两颗高性能Cortex-A75核心和六颗高效能Cortex-A55核心。此外,它还集成了先进的图像处理单元和语音唤醒功能,为用户提供卓越的性能体验。 ... [详细]
author-avatar
上官邱老
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有