一个 Piecewise Polynomial 是一维的函数,描述二维曲线是不够的,这时候就有一个 Spline 2D,假设我们把曲线分成 N 截,每节曲线段它的 X 坐标是一个 Polynomial ,Y 坐标也是一个 Polynomial 。如下图所示,用 5 阶多项式来表示 X 和Y,称之为 Quintic Spline(五次样条),每一节都是这样的函数。这种表示有一个很好的特性,就是目标函数具有旋转不变性。怎么让曲线足够平滑?我们让它在 X 坐标上的变化率,也就是三阶导的平方是最小的,Y 上的变化率三阶导也是最小的,代价函数就是这两个变化率的和。代价函数的求解就是一个二次规划问题,我把这种 Loss Function 定义成这种形式是因为平方的积分能够给计算带来便利。
前面说的是用一节一节的线段来保证曲线是光滑的,在线段内部用一个二维的 Polynomial 表示,在内部是 N 阶可导的,但是如何保证节点处是平滑的呢?这个叫做端点约束条件,需要保证 X 和 Y 方向的倒数是相等的,一般要求到三阶导都是相等的,包括它的 X,Y 点的值也完全相等,此时就能保证三阶导连续。
Spiral Path
还有一种方式叫做螺旋曲线,它通过一个极坐标形式定义,比如说沿着一条曲线,如果一个点 S 的曲率是知道的,假设它的原点在 (0,0)的位置,可以唯一定义出一条经过 S 的曲线,也就是 Spiral Path 。那么可以让 Spiral Path 满足起点、终点约束条件生成一条螺旋曲线。