热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

ApacheFlink技术解读之分布式运行时环境

本文基于 Apache Flink 1.3 版本官方文档翻译。

任务与运算符链接

在实际的分布式计算环境中,Flink 会将多个运算子任务链接到分布式计算任务中。每个线程执行一个计算任务。将运算符链接到计算任务中对于系统性能的提升有很大的帮助:它降低了线程间切换与缓冲的开销,并且在降低延时的同时减少了系统的总体吞吐量。可以对这种链接操作进行配置,具体内容请参考链接文档。

如下图所示的数据流图包含五个子任务,也就是说其中有五个并发执行的线程:

Apache Flink 技术解读之分布式运行时环境

作业管理器,任务管理器与客户端

Flink 运行时环境由两种类型进程组成:

  • 作业管理器(也称为 master)用于协调程序的分布式执行。它的主要功能是调度任务,调整检查点,并在任务失败时安排恢复过程等。每个 Flink 环境中只有一个作业管理器。未来的高可用设计中会包含多个作业管理器,其中一个是 leader,其他作为备份程序。
  • 任务管理器(也称为 worker)用于执行数据流图的任务(更准确地说,是计算子任务),并对数据流进行缓冲、交换。每个 Flink 环境中至少包含一个任务管理器。

可以以多种方式启动作业管理器和任务管理器:直接作为独立的集群在机器上启动,在容器中启动,或者通过 YARN、Mesos 这类资源框架进行管理。启动之后,任务管理器会主动上连到作业管理器来报告自身的状态,以便作业管理器来分配任务。

客户端的主要作用是准备并向作业管理器发送数据流图,它实际上并不是运行时环境的一个组成部分。在发送完数据流图之后,客户端可以选择断开与作业管理器的连接,也可以继续保持连接以等待程序运行结果。客户端程序可以以 Java/Scala 程序的形式执行,也可以以命令行的形式(./bin/flink run …)执行。

Apache Flink 技术解读之分布式运行时环境

任务槽与资源

每个 worker(任务管理器)都是一个独立的 JVM 进程,每个子任务就是运行在其中的独立线程里。为了控制 worker 接收任务的数量,在 worker 中引入了任务槽的概念(每个 worker 中至少包含一个任务槽)。

每个任务槽代表任务管理器中一个特定的资源池子集。例如,如果任务管理器有3个槽,它会为每个槽分配 1/3 的内存。将资源池槽化可以让子任务获取指定容量的内存资源,而避免同其他作业中的子任务竞争。注意,这里没有对 CPU 进行隔离;目前任务槽仅仅用于划分任务的内存。

通过调整任务槽的数量,用户可以设定子任务之间独立运行的程度。如果任务管理器中只有一个槽,那么每个任务组都会在一个独立的 JVM(例如 JVM 可以在一个独立的容器中启动)中运行。任务管理器中配置更多的槽就意味着会有更多的子任务共享同一个 JVM。在同一个 JVM 中的任务会共享 TCP 连接(通过多路复用的方式)和心跳信息,同时他们也会共享数据集和数据结构,这在某种程度上可以降低单任务的开销。

Apache Flink 技术解读之分布式运行时环境

默认情况下,Flink 会允许同一个作业的多个子任务共享一个槽,即便这些子任务来自不同的任务。这种情况下,有可能会出现某个槽中包含一个完整的作业流水的场景。这样做主要有两点好处:

  • Flink 集群需要在作业中确保任务槽数量和程序并发量完全一致,而并不需要计算程序中任务(每个任务的并发量也许都不相同)的具体数量。
  • 可以提高资源利用率。如果没有任务槽共享机制,非密集型的 source/map() 子任务就会和密集型的 window 子任务一样阻塞大量资源。如果有任务槽共享机制,在程序的并发量从 2 提高到 6 的情况下(举个例子),就可以让密集型子任务完全分散到任务管理器中,从而可以显著提高槽的资源利用率。

Apache Flink 技术解读之分布式运行时环境

Flink API 中包含一个资源组机制,可以避免不合理的任务槽共享。

依照以往的经验来说,默认的任务槽数量应设置为 CPU 核心的数量。如果使用超线程技术,每个槽中甚至可以调度处理超过 2 个硬件线程。

后端存储

通过键值对索引的数据结构保存在选定的后端存储中。有的后端存储将数据保存在内存中的哈希表中,而有的存储会使用 RocksDB 来保存键值对。除了定义保存状态的数据结构之外,后端存储还实现了获取键值对的特定时间点快照的功能,该功能可以将快照保存为检查点的一部分。

Apache Flink 技术解读之分布式运行时环境

保存点

使用数据流 API 的程序可以从指定的保存点恢复。保存点具备更新程序和 Flink 集群而不丢失任何状态的功能。

保存点可以看作是一种手动触发的检查点,该检查点可以获取程序的快照并将其写入后端存储中。所以说保存点的功能依赖于一般的检查点机制。程序执行时会定期在 worker 节点生成快照和检查点。由于 Flink 的恢复机制只需要使用最新一个有效的检查点,在新的检查点生成后就可以安全移除其余旧的检查点了。

保存点和定期检查点在大部分情况下都很相似,区别只在于保存点是由用户触发的,并且在新的检查点生成后不会自动过期失效。保存点可以通过命令行生成,也可以在调用 REST API 取消作业时产生。

Posted by WeYo,天然宅,爱技术,爱生活。技术方向:大数据/分布式计算/实时流计算/后台开发/自动化/Storm/Hadoop/Java/Linux。原文载于WeYo个人博客。


数据为上,方得始终。更多精彩,欢迎关注CSDN大数据公众号!

Apache Flink 技术解读之分布式运行时环境


推荐阅读
  • 初探性能优化:入门指南与实践技巧
    在编程领域,常有“尚未精通编码便急于优化”的声音。为了从性能优化的角度提升代码质量,本文将带领读者初步探索性能优化的基本概念与实践技巧。即使程序看似运行良好,数据处理效率仍有待提高,通过系统学习性能优化,能够帮助开发者编写更加高效、稳定的代码。文章不仅介绍了性能优化的基础知识,还提供了实用的调优方法和工具,帮助读者在实际项目中应用这些技术。 ... [详细]
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 在当前的软件开发领域,Lua 作为一种轻量级脚本语言,在 .NET 生态系统中的应用逐渐受到关注。本文探讨了 Lua 在 .NET 环境下的集成方法及其面临的挑战,包括性能优化、互操作性和生态支持等方面。尽管存在一定的技术障碍,但通过不断的学习和实践,开发者能够克服这些困难,拓展 Lua 在 .NET 中的应用场景。 ... [详细]
  • 数字图书馆近期展出了一批精选的Linux经典著作,这些书籍虽然部分较为陈旧,但依然具有重要的参考价值。如需转载相关内容,请务必注明来源:小文论坛(http://www.xiaowenbbs.com)。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 在项目开发过程中,掌握一些关键的Linux命令至关重要。例如,使用 `Ctrl+C` 可以立即终止当前正在执行的命令;通过 `ps -ef | grep ias` 可以查看特定服务的进程信息,包括进程ID(PID)和JVM参数(如内存分配和远程连接端口);而 `netstat -apn | more` 则用于显示网络连接状态,帮助开发者监控和调试网络服务。这些命令不仅提高了开发效率,还能有效解决运行时的各种问题。 ... [详细]
  • 2021年7月22日上午9点至中午12点,我专注于Java的学习,重点补充了之前在视频中遗漏的多线程知识。首先,我了解了进程的概念,即程序在内存中运行时形成的一个独立执行单元。其次,学习了线程作为进程的组成部分,是进程中可并发执行的最小单位,负责处理具体的任务。此外,我还深入研究了Runnable接口的使用方法及其在多线程编程中的重要作用。 ... [详细]
  • 全面解析Java虚拟机:内存模型深度剖析 ... [详细]
  • 2019年后蚂蚁集团与拼多多面试经验详述与深度剖析
    2019年后蚂蚁集团与拼多多面试经验详述与深度剖析 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 在最近的WWDC17大会上,苹果公司宣布了多项重要更新,其中一项是macOS High Sierra 10.13 Final的正式发布。这一版本经过优化,显著提升了系统的稳定性和响应速度,为用户在任何Mac设备上提供了更加流畅的使用体验。本文将详细介绍如何在Windows系统中利用VMware虚拟机软件安装并运行macOS High Sierra 10.13 Final,帮助用户在非苹果硬件上体验这一先进操作系统。 ... [详细]
author-avatar
sasame
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有