热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Android消息处理机制Looper和Handler详解

Android应用程序是通过消息来驱动的,系统为每一个应用程序维护一个消息队例,应用程序的主线程不断地从这个消息队例中获取消息(Looper),然后对这些消息进行处理(Handler),这样就实现了通过消息来驱动应用程序的执行,本文将详细分析Android应用程序的消息处理机制
Message:消息,其中包含了消息ID,消息处理对象以及处理的数据等,由MessageQueue统一列队,终由Handler处理。
Handler:处理者,负责Message的发送及处理。使用Handler时,需要实现handleMessage(Message msg)方法来对特定的Message进行处理,例如更新UI等。
MessageQueue:消息队列,用来存放Handler发送过来的消息,并按照FIFO规则执行。当然,存放Message并非实际意义的保存,而是将Message以链表的方式串联起来的,等待Looper的抽取。
Looper:消息泵,不断地从MessageQueue中抽取Message执行。因此,一个MessageQueue需要一个Looper。
Thread:线程,负责调度整个消息循环,即消息循环的执行场所。

Android系统的消息队列和消息循环都是针对具体线程的,一个线程可以存在(当然也可以不存在)一个消息队列和一个消 息循环(Looper),特定线程的消息只能分发给本线程,不能进行跨线程,跨进程通讯。但是创建的工作线程默认是没有消息循环和消息队列的,如果想让该 线程具有消息队列和消息循环,需要在线程中首先调用Looper.prepare()来创建消息队列,然后调用Looper.loop()进入消息循环。 如下例所示:

 LooperThread Thread {
    Handler mHandler;

    run() {
     Looper.prepare();

     mHandler = Handler() {
        handleMessage(Message msg) {
         
       }
     };

     Looper.loop();
   }
 }

 //Looper类分析
 //没找到合适的分析代码的办法,只能这么来了。每个重要行的上面都会加上注释
 //功能方面的代码会在代码前加上一段分析

 public class Looper {
  //static变量,判断是否打印调试信息。
   private static final boolean DEBUG = false;
   private static final boolean localLOGV = DEBUG ? Config.LOGD : Config.LOGV;
 
   // sThreadLocal.get() will return null unless you've called prepare().
 //线程本地存储功能的封装,TLS,thread local storage,什么意思呢?因为存储要么在栈上,例如函数内定义的内部变量。要么在堆上,例如new或者malloc出来的东西
 //但是现在的系统比如Linux和windows都提供了线程本地存储空间,也就是这个存储空间是和线程相关的,一个线程内有一个内部存储空间,这样的话我把线程相关的东西就存储到
 //这个线程的TLS中,就不用放在堆上而进行同步操作了。
   private static final ThreadLocal sThreadLocal = new ThreadLocal();
 //消息队列,MessageQueue,看名字就知道是个queue..
   final MessageQueue mQueue;
   volatile boolean mRun;
 //和本looper相关的那个线程,初始化为null
   Thread mThread;
   private Printer mLogging = null;
 //static变量,代表一个UI Process(也可能是service吧,这里默认就是UI)的主线程
   private static Looper mMainLooper = null;
   
   /** Initialize the current thread as a looper.
    * This gives you a chance to create handlers that then reference
    * this looper, before actually starting the loop. Be sure to call
    * {@link #loop()} after calling this method, and end it by calling
    * {@link #quit()}.
    */
 //往TLS中设上这个Looper对象的,如果这个线程已经设过了looper的话就会报错
 //这说明,一个线程只能设一个looper
   public static final void prepare() {
     if (sThreadLocal.get() != null) {
       throw new RuntimeException("Only one Looper may be created per thread");
     }
     sThreadLocal.set(new Looper());
   }
   
   /** Initialize the current thread as a looper, marking it as an application's main 
   * looper. The main looper for your application is created by the Android environment,
   * so you should never need to call this function yourself.
   * {@link #prepare()}
   */
 //由framework设置的UI程序的主消息循环,注意,这个主消息循环是不会主动退出的
 //  
   public static final void prepareMainLooper() {
     prepare();
     setMainLooper(myLooper());
 //判断主消息循环是否能退出....
 //通过quit函数向looper发出退出申请
     if (Process.supportsProcesses()) {
       myLooper().mQueue.mQuitAllowed = false;
     }
   }
 
   private synchronized static void setMainLooper(Looper looper) {
     mMainLooper = looper;
   }
   
   /** Returns the application's main looper, which lives in the main thread of the application.
   */
   public synchronized static final Looper getMainLooper() {
     return mMainLooper;
   }
 
   /**
   * Run the message queue in this thread. Be sure to call
   * {@link #quit()} to end the loop.
   */
 //消息循环,整个程序就在这里while了。
 //这个是static函数喔!
   public static final void loop() {
     Looper me = myLooper();//从该线程中取出对应的looper对象
     MessageQueue queue = me.mQueue;//取消息队列对象...
     while (true) {
       Message msg = queue.next(); // might block取消息队列中的一个待处理消息..
       //if (!me.mRun) {//是否需要退出?mRun是个volatile变量,跨线程同步的,应该是有地方设置它。
       //  break;
       //}
       if (msg != null) {
         if (msg.target == null) {
           // No target is a magic identifier for the quit message.
           return;
         }
         if (me.mLogging!= null) me.mLogging.println(
             ">>>>> Dispatching to " + msg.target + " "
             + msg.callback + ": " + msg.what
             );
         msg.target.dispatchMessage(msg);
         if (me.mLogging!= null) me.mLogging.println(
             "<<<<printer 
  * at the beginning and ending of each message dispatch, identifying the
  * target Handler and message contents.
  * 
  * @param printer A Printer object that will receive log messages, or
  * null to disable message logging.
  */
//设置调试输出对象,looper循环的时候会打印相关信息,用来调试用最好了。
 public void setMessageLogging(Printer printer) {
   mLogging = printer;
 }
 
 /**
  * Return the {@link MessageQueue} object associated with the current
  * thread. This must be called from a thread running a Looper, or a
  * NullPointerException will be thrown.
  */
 public static final MessageQueue myQueue() {
   return myLooper().mQueue;
 }
//创建一个新的looper对象,
//内部分配一个消息队列,设置mRun为true
 private Looper() {
   mQueue = new MessageQueue();
   mRun = true;
   mThread = Thread.currentThread();
 }

 public void quit() {
   Message msg = Message.obtain();
   // NOTE: By enqueueing directly into the message queue, the
   // message is left with a null target. This is how we know it is
   // a quit message.
   mQueue.enqueueMessage(msg, 0);
 }

 /**
  * Return the Thread associated with this Looper.
  */
 public Thread getThread() {
   return mThread;
 }
 //后面就简单了,打印,异常定义等。
 public void dump(Printer pw, String prefix) {
   pw.println(prefix + this);
   pw.println(prefix + "mRun=" + mRun);
   pw.println(prefix + "mThread=" + mThread);
   pw.println(prefix + "mQueue=" + ((mQueue != null) &#63; mQueue : "(null"));
   if (mQueue != null) {
     synchronized (mQueue) {
       Message msg = mQueue.mMessages;
       int n = 0;
       while (msg != null) {
         pw.println(prefix + " Message " + n + ": " + msg);
         n++;
         msg = msg.next;
       }
       pw.println(prefix + "(Total messages: " + n + ")");
     }
   }
 }

 public String toString() {
   return "Looper{"
     + Integer.toHexString(System.identityHashCode(this))
     + "}";
 }

 static class HandlerException extends Exception {

   HandlerException(Message message, Throwable cause) {
     super(createMessage(cause), cause);
   }

   static String createMessage(Throwable cause) {
     String causeMsg = cause.getMessage();
     if (causeMsg == null) {
       causeMsg = cause.toString();
     }
     return causeMsg;
   }
 }
}

那怎么往这个消息队列中发送消息呢??调用looper的static函数myQueue可以获得消息队列,这样你就可用自己往里边插入消息了。不过这种方法比较麻烦,这个时候handler类就发挥作用了。先来看看handler的代码,就明白了。

 class Handler{
 ..........
 //handler默认构造函数
 public Handler() {
 //这个if是干嘛用的暂时还不明白,涉及到java的深层次的内容了应该
     if (FIND_POTENTIAL_LEAKS) {
       final Class<&#63; extends Handler> klass = getClass();
       if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
           (klass.getModifiers() & Modifier.STATIC) == 0) {
         Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
           klass.getCanonicalName());
       }
     }
 //获取本线程的looper对象
 //如果本线程还没有设置looper,这回抛异常
     mLooper = Looper.myLooper();
     if (mLooper == null) {
       throw new RuntimeException(
         "Can't create handler inside thread that has not called Looper.prepare()");
     }
 //无耻啊,直接把looper的queue和自己的queue搞成一个了
 //这样的话,我通过handler的封装机制加消息的话,就相当于直接加到了looper的消息队列中去了
     mQueue = mLooper.mQueue;
     mCallback = null;
   }
 //还有好几种构造函数,一个是带callback的,一个是带looper的
 //由外部设置looper
   public Handler(Looper looper) {
     mLooper = looper;
     mQueue = looper.mQueue;
     mCallback = null;
   }
 // 带callback的,一个handler可以设置一个callback。如果有callback的话,
 //凡是发到通过这个handler发送的消息,都有callback处理,相当于一个总的集中处理
 //待会看dispatchMessage的时候再分析
 public Handler(Looper looper, Callback callback) {
     mLooper = looper;
     mQueue = looper.mQueue;
     mCallback = callback;
   }
 //
 //通过handler发送消息
 //调用了内部的一个sendMessageDelayed
 public final boolean sendMessage(Message msg)
   {
     return sendMessageDelayed(msg, 0);
   }
 //FT,又封装了一层,这回是调用sendMessageAtTime了
 //因为延时时间是基于当前调用时间的,所以需要获得绝对时间传递给sendMessageAtTime
 public final boolean sendMessageDelayed(Message msg, long delayMillis)
   {
     if (delayMillis <0) {
       delayMillis = 0;
     }
     return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
   }
 
 
 public boolean sendMessageAtTime(Message msg, long uptimeMillis)
   {
     boolean sent = false;
     MessageQueue queue = mQueue;
     if (queue != null) {
 //把消息的target设置为自己,然后加入到消息队列中
 //对于队列这种数据结构来说,操作比较简单了
       msg.target = this;
       sent = queue.enqueueMessage(msg, uptimeMillis);
     }
     else {
       RuntimeException e = new RuntimeException(
         this + " sendMessageAtTime() called with no mQueue");
       Log.w("Looper", e.getMessage(), e);
     }
     return sent;
   }
 //还记得looper中的那个消息循环处理吗
 //从消息队列中得到一个消息后,会调用它的target的dispatchMesage函数
 //message的target已经设置为handler了,所以
 //最后会转到handler的msg处理上来
 //这里有个处理流程的问题
 public void dispatchMessage(Message msg) {
 //如果msg本身设置了callback,则直接交给这个callback处理了
     if (msg.callback != null) {
       handleCallback(msg);
     } else {
 //如果该handler的callback有的话,则交给这个callback处理了---相当于集中处理
      if (mCallback != null) {
         if (mCallback.handleMessage(msg)) {
           return;
         }
      }
 //否则交给派生处理,基类默认处理是什么都不干
       handleMessage(msg);
     }
   }
 ..........
 }

生成

    Message msg = mHandler.obtainMessage();
    msg.what = what;
    msg.sendToTarget();

发送

    MessageQueue queue = mQueue;
    if (queue != null) {
      msg.target = this;
      sent = queue.enqueueMessage(msg, uptimeMillis);
    }

在Handler.java的sendMessageAtTime(Message msg, long uptimeMillis)方法中,我们看到,它找到它所引用的MessageQueue,然后将Message的target设定成自己(目的是为了在处理消息环节,Message能找到正确的Handler),再将这个Message纳入到消息队列中。

抽取

    Looper me = myLooper();
    MessageQueue queue = me.mQueue;
    while (true) {
      Message msg = queue.next(); // might block
      if (msg != null) {
        if (msg.target == null) {
          // No target is a magic identifier for the quit message.
          return;
        }
        msg.target.dispatchMessage(msg);
        msg.recycle();
      }
    }

在Looper.java的loop()函数里,我们看到,这里有一个死循环,不断地从MessageQueue中获取下一个(next方法)Message,然后通过Message中携带的target信息,交由正确的Handler处理(dispatchMessage方法)。

处理

    if (msg.callback != null) {
      handleCallback(msg);
    } else {
      if (mCallback != null) {
        if (mCallback.handleMessage(msg)) {
          return;
        }
      }
      handleMessage(msg);
    }

在Handler.java的dispatchMessage(Message msg)方法里,其中的一个分支就是调用handleMessage方法来处理这条Message,而这也正是我们在职责处描述使用Handler时需要实现handleMessage(Message msg)的原因。

至于dispatchMessage方法中的另外一个分支,我将会在后面的内容中说明。

至此,我们看到,一个Message经由Handler的发送,MessageQueue的入队,Looper的抽取,又再一次地回到Handler的怀抱。而绕的这一圈,也正好帮助我们将同步操作变成了异步操作。

3)剩下的部分,我们将讨论一下Handler所处的线程及更新UI的方式。

在主线程(UI线程)里,如果创建Handler时不传入Looper对象,那么将直接使用主线程(UI线程)的Looper对象(系统已经帮我们创建了);在其它线程里,如果创建Handler时不传入Looper对象,那么,这个Handler将不能接收处理消息。在这种情况下,通用的作法是:

        class LooperThread extends Thread {
                public Handler mHandler;
                public void run() {
                        Looper.prepare();
                        mHandler = new Handler() {
                                public void handleMessage(Message msg) {
                                       // process incoming messages here
                                }
                        };
                        Looper.loop();
                }
        }

在创建Handler之前,为该线程准备好一个Looper(Looper.prepare),然后让这个Looper跑起来(Looper.loop),抽取Message,这样,Handler才能正常工作。

因此,Handler处理消息总是在创建Handler的线程里运行。而我们的消息处理中,不乏更新UI的操作,不正确的线程直接更新UI将引发异常。因此,需要时刻关心Handler在哪个线程里创建的。

如何更新UI才能不出异常呢?SDK告诉我们,有以下4种方式可以从其它线程访问UI线程:

·      Activity.runOnUiThread(Runnable)
·      View.post(Runnable)
·      View.postDelayed(Runnable, long)
·      Handler
其中,重点说一下的是View.post(Runnable)方法。在post(Runnable action)方法里,View获得当前线程(即UI线程)的Handler,然后将action对象post到Handler里。在Handler里,它将传递过来的action对象包装成一个Message(Message的callback为action),然后将其投入UI线程的消息循环中。在Handler再次处理该Message时,有一条分支(未解释的那条)就是为它所设,直接调用runnable的run方法。而此时,已经路由到UI线程里,因此,我们可以毫无顾虑的来更新UI。

4) 几点小结

·      Handler的处理过程运行在创建Handler的线程里
·      一个Looper对应一个MessageQueue
·      一个线程对应一个Looper
·      一个Looper可以对应多个Handler
·      不确定当前线程时,更新UI时尽量调用post方法


推荐阅读
  • malloc 是 C 语言中的一个标准库函数,全称为 memory allocation,即动态内存分配。它用于在程序运行时申请一块指定大小的连续内存区域,并返回该区域的起始地址。当无法预先确定内存的具体位置时,可以通过 malloc 动态分配内存。 ... [详细]
  • 华为捐赠欧拉操作系统,承诺不推商用版
    华为近日宣布将欧拉开源操作系统捐赠给开放原子开源基金会,并承诺不会推出欧拉的商用发行版。此举旨在推动欧拉和鸿蒙操作系统的全场景融合与生态发展。 ... [详细]
  • Python多线程详解与示例
    本文介绍了Python中的多线程编程,包括僵尸进程和孤儿进程的概念,并提供了具体的代码示例。同时,详细解释了0号进程和1号进程在系统中的作用。 ... [详细]
  • 本文详细介绍了Linux系统中用于管理IPC(Inter-Process Communication)资源的两个重要命令:ipcs和ipcrm。通过这些命令,用户可以查看和删除系统中的消息队列、共享内存和信号量。 ... [详细]
  • 本文介绍了Java编程语言的基础知识,包括其历史背景、主要特性以及如何安装和配置JDK。此外,还详细讲解了如何编写和运行第一个Java程序,并简要介绍了Eclipse集成开发环境的安装和使用。 ... [详细]
  • PHP 5.5.31 和 PHP 5.6.17 安全更新发布
    PHP 5.5.31 和 PHP 5.6.17 已正式发布,主要包含多个安全修复。强烈建议所有用户尽快升级至最新版本以确保系统安全。 ... [详细]
  • Bootstrap 缩略图展示示例
    本文将展示如何使用 Bootstrap 实现缩略图效果,并提供详细的代码示例。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • 包含phppdoerrorcode的词条 ... [详细]
  • 高端存储技术演进与趋势
    本文探讨了高端存储技术的发展趋势,包括松耦合架构、虚拟化、高性能、高安全性和智能化等方面。同时,分析了全闪存阵列和中端存储集群对高端存储市场的冲击,以及高端存储在不同应用场景中的发展趋势。 ... [详细]
  • 解决SQL Server数据库sa登录名无法连接的问题
    在安装SQL Server数据库后,使用Windows身份验证成功,但使用SQL Server身份验证时遇到问题。本文将介绍如何通过设置sa登录名的密码、启用登录名状态以及开启TCP协议来解决这一问题。 ... [详细]
  • 本文总结了《编程珠玑》第12章关于采样问题的算法描述与改进,并提供了详细的编程实践记录。参考了其他博主的总结,链接为:http://blog.csdn.net/neicole/article/details/8518602。 ... [详细]
  • 本文介绍了如何在 ASP.NET 中设置 Excel 单元格格式为文本,获取多个单元格区域并作为表头,以及进行单元格合并、赋值、格式设置等操作。 ... [详细]
  • LDAP服务器配置与管理
    本文介绍如何通过安装和配置SSSD服务来统一管理用户账户信息,并实现其他系统的登录调用。通过图形化交互界面配置LDAP服务器,确保用户账户信息的集中管理和安全访问。 ... [详细]
  • 在 CentOS 6.4 上安装 QT5 并启动 Qt Creator 时,可能会遇到缺少 GLIBCXX_3.4.15 的问题。这是由于系统中的 libstdc++.so.6 版本过低。本文将详细介绍如何通过更新 GCC 版本来解决这一问题。 ... [详细]
author-avatar
奶油晓生2502876643
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有