热门标签 | HotTags
当前位置:  开发笔记 > Android > 正文

Android热修复Tinker接入及源码解读

热修复这项技术,基本上已经成为项目比较重要的模块了。主要因为项目在上线之后,都难免会有各种问题本文讲述了Android热修复Tinker接入及源码解读

一、概述

热修复这项技术,基本上已经成为项目比较重要的模块了。主要因为项目在上线之后,都难免会有各种问题,而依靠发版去修复问题,成本太高了。

现在热修复的技术基本上有阿里的AndFix、QZone的方案、美团提出的思想方案以及腾讯的Tinker等。

其中AndFix可能接入是最简单的一个(和Tinker命令行接入方式差不多),不过兼容性还是是有一定的问题的;QZone方案对性能会有一定的影响,且在Art模式下出现内存错乱的问题(其实这个问题我之前并不清楚,主要是tinker在MDCC上指出的);美团提出的思想方案主要是基于Instant Run的原理,目前尚未开源,不过这个方案我还是蛮喜欢的,主要是兼容性好。

这么看来,如果选择开源方案,tinker目前是最佳的选择,tinker的介绍有这么一句:

Tinker已运行在微信的数亿Android设备上,那么为什么你不使用Tinker呢?

好了,说了这么多,下面来看看tinker如何接入,以及tinker的大致的原理分析。希望通过本文可以实现帮助大家更好的接入tinker,以及去了解tinker的一个大致的原理。

二、接入Tinker

接入tinker目前给了两种方式,一种是基于命令行的方式,类似于AndFix的接入方式;一种就是gradle的方式。

考虑早期使用Andfix的app应该挺多的,以及很多人对gradle的相关配置还是觉得比较繁琐的,下面对两种方式都介绍下。

(1)命令行接入

接入之前我们先考虑下,接入的话,正常需要的前提(开启混淆的状态)。

对于API

一般来说,我们接入热修库,会在Application#onCreate中进行一下初始化操作。然后在某个地方去调用类似loadPatch这样的API去加载patch文件。

对于patch的生成

简单的方式就是通过两个apk做对比然后生成;需要注意的是:两个apk做对比,需要的前提条件,第二次打包混淆所使用的mapping文件应该和线上apk是一致的。

最后就是看看这个项目有没有需要配置混淆;

有了大致的概念,我们就基本了解命令行接入tinker,大致需要哪些步骤了。

依赖引入

dependencies {
  // ...
  //可选,用于生成application类
  provided('com.tencent.tinker:tinker-android-anno:1.7.7')
  //tinker的核心库
  compile('com.tencent.tinker:tinker-android-lib:1.7.7')
}

顺便加一下签名的配置:

android{
 //...
  signingConfigs {
    release {      try {
        storeFile file("release.keystore")
        storePassword "testres"
        keyAlias "testres"
        keyPassword "testres"
      } catch (ex) {
        throw new InvalidUserDataException(ex.toString())
      }
    }
  }

  buildTypes {
    release {
      minifyEnabled true
      signingConfig signingConfigs.release
      proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
    }
    debug {
      debuggable true
      minifyEnabled true
      signingConfig signingConfigs.release
      proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
    }
  }
}

文末会有demo的下载地址,可以直接参考build.gradle文件,不用担心这些签名文件去哪找。

API引入

API主要就是初始化和loadPacth。

正常情况下,我们会考虑在Application的onCreate中去初始化,不过tinker推荐下面的写法:

@DefaultLifeCycle(application = ".SimpleTinkerInApplication",
    flags = ShareConstants.TINKER_ENABLE_ALL,
    loadVerifyFlag = false)public class SimpleTinkerInApplicationLike extends ApplicationLike {
  public SimpleTinkerInApplicationLike(Application application, int tinkerFlags, boolean tinkerLoadVerifyFlag, long applicationStartElapsedTime, long applicationStartMillisTime, Intent tinkerResultIntent) {    super(application, tinkerFlags, tinkerLoadVerifyFlag, applicationStartElapsedTime, applicationStartMillisTime, tinkerResultIntent);
  }  @Override
  public void onBaseContextAttached(Context base) {    super.onBaseContextAttached(base);
  }  @Override
  public void onCreate() {    super.onCreate();
    TinkerInstaller.install(this);
  }
}

ApplicationLike通过名字你可能会猜,并非是Application的子类,而是一个类似Application的类。

tinker建议编写一个ApplicationLike的子类,你可以当成Application去使用,注意顶部的注解:@DefaultLifeCycle,其application属性,会在编译期生成一个SimpleTinkerInApplication类。

所以,虽然我们这么写了,但是实际上Application会在编译期生成,所以AndroidManifest.xml中是这样的:

 

 

编写如果报红,可以build下。

这样其实也能猜出来,这个注解背后有个Annotation Processor在做处理

通过该文会对一个编译时注解的运行流程和基本API有一定的掌握,文中也会对tinker该部分的源码做解析。

上述,就完成了tinker的初始化,那么调用loadPatch的时机,我们直接在Activity中添加一个Button设置:

public class MainActivity extends AppCompatActivity {

  @Override
  protected void onCreate(Bundle savedInstanceState) {    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
  }  public void loadPatch(View view) {
    TinkerInstaller.onReceiveUpgradePatch(getApplicationContext(),
        Environment.getExternalStorageDirectory().getAbsolutePath() + "/patch_signed.apk");
  }
}

我们会将patch文件直接push到sdcard根目录;

所以一定要注意:添加SDCard权限,如果你是6.x以上的系统,自己添加上授权代码,或者手动在设置页面打开SDCard读写权限。

除以以外,有个特殊的地方就是tinker需要在AndroidManifest.xml中指定TINKER_ID。


 
  //...

到此API相关的就结束了,剩下的就是考虑patch如何生成。

patch生成

tinker提供了patch生成的工具,源码见:tinker-patch-cli,打成一个jar就可以使用,并且提供了命令行相关的参数以及文件。

命令行如下:

java -jar tinker-patch-cli-1.7.7.jar -old old.apk -new new.apk -config tinker_config.xml -out output

需要注意的就是tinker_config.xml,里面包含tinker的配置,例如签名文件等。

这里我们直接使用tinker提供的签名文件,所以不需要做修改,不过里面有个Application的item修改为与本例一致:

大致的文件结构如下:

可以在tinker-patch-cli中提取,或者直接下载文末的例子。

上述介绍了patch生成的命令,最后需要注意的就是,在第一次打出apk的时候,保留下生成的mapping文件,在/build/outputs/mapping/release/mapping.txt

可以copy到与proguard-rules.pro同目录,同时在第二次打修复包的时候,在proguard-rules.pro中添加上:

-applymapping mapping.txt

保证后续的打包与线上包使用的是同一个mapping文件。

tinker本身的混淆相关配置,可以参考:

  • tinker_proguard.pro

如果,你对该部分描述不了解,可以直接查看源码即可。

测试

首先随便生成一个apk(API、混淆相关已经按照上述引入),安装到手机或者模拟器上。

然后,copy出mapping.txt文件,设置applymapping,修改代码,再次打包,生成new.apk。

两次的apk,可以通过命令行指令去生成patch文件。

如果你下载本例,命令需要在[该目录]下执行。

最终会在output文件夹中生成产物:

我们直接将patch_signed.apk push到sdcard,点击loadpatch,一定要观察命令行是否成功。

本例修改了title。

点击loadPatch,观察log,如果成功,应用默认为重启,然后再次启动即可达到修复效果。

到这里命令行的方式就介绍完了,和Andfix的接入的方式基本上是一样的。

值得注意的是:该例仅展示了基本的接入,对于tinker的各种配置信息,还是需要去读tinker的文档(如果你确定要使用)tinker-wiki。

(2)gradle接入

gradle接入的方式应该算是主流的方式,所以tinker也直接给出了例子,单独将该tinker-sample-android以project方式引入即可。

引入之后,可以查看其接入API的方式,以及相关配置。

在你每次build时,会在build/bakApk下生成本地打包的apk,R文件,以及mapping文件。

如果你需要生成patch文件,可以通过:

./gradlew tinkerPatchRelease // 或者 ./gradlew tinkerPatchDebug

生成。

生成目录为:build/outputs/tinkerPatch

需要注意的是,需要在app/build.gradle中设置相比较的apk(即old.apk,本次为new.apk),

ext {
  tinkerEnabled = true
  //old apk file to build patch apk
  tinkerOldApkPath = "${bakPath}/old.apk"
  //proguard mapping file to build patch apk
  tinkerApplyMappingPath = "${bakPath}/old-mapping.txt"}

提供的例子,基本上展示了tinker的自定义扩展的方式,具体还可以参考:

  • Tinker-自定义扩展

所以,如果你使用命令行方式接入,也不要忘了学习下其支持哪些扩展。

三、Application是如何编译时生成的

从注释和命名上看:

//可选,用于生成application类provided('com.tencent.tinker:tinker-android-anno:1.7.7')

明显是该库,其结构如下:

典型的编译时注解的项目,源码见tinker-android-anno。

入口为com.tencent.tinker.anno.AnnotationProcessor,可以在该services/javax.annotation.processing.Processor文件中找到处理类全路径。

再次建议,如果你不了解,简单阅读下Android 如何编写基于编译时注解的项目该文。

直接看AnnotationProcessor的process方法:

@Overridepublic boolean process(Set<&#63; extends TypeElement> annotations, RoundEnvironment roundEnv) {
  processDefaultLifeCycle(roundEnv.getElementsAnnotatedWith(DefaultLifeCycle.class));  return true;
}

直接调用了processDefaultLifeCycle:

private void processDefaultLifeCycle(Set<&#63; extends Element> elements) {    // 被注解DefaultLifeCycle标识的对象
    for (Element e : elements) {     // 拿到DefaultLifeCycle注解对象
      DefaultLifeCycle ca = e.getAnnotation(DefaultLifeCycle.class);

      String lifeCycleClassName = ((TypeElement) e).getQualifiedName().toString();
      String lifeCyclePackageName = lifeCycleClassName.substring(0, lifeCycleClassName.lastIndexOf('.'));
      lifeCycleClassName = lifeCycleClassName.substring(lifeCycleClassName.lastIndexOf('.') + 1);

      String applicatiOnClassName= ca.application();      if (applicationClassName.startsWith(".")) {
        applicatiOnClassName= lifeCyclePackageName + applicationClassName;
      }
      String applicatiOnPackageName= applicationClassName.substring(0, applicationClassName.lastIndexOf('.'));
      applicatiOnClassName= applicationClassName.substring(applicationClassName.lastIndexOf('.') + 1);

      String loaderClassName = ca.loaderClass();      if (loaderClassName.startsWith(".")) {
        loaderClassName = lifeCyclePackageName + loaderClassName;
      }       // /TinkerAnnoApplication.tmpl
      final InputStream is = AnnotationProcessor.class.getResourceAsStream(APPLICATION_TEMPLATE_PATH);      final Scanner scanner = new Scanner(is);      final String template = scanner.useDelimiter("\\A").next();      final String fileCOntent= template
        .replaceAll("%PACKAGE%", applicationPackageName)
        .replaceAll("%APPLICATION%", applicationClassName)
        .replaceAll("%APPLICATION_LIFE_CYCLE%", lifeCyclePackageName + "." + lifeCycleClassName)
        .replaceAll("%TINKER_FLAGS%", "" + ca.flags())
        .replaceAll("%TINKER_LOADER_CLASS%", "" + loaderClassName)
        .replaceAll("%TINKER_LOAD_VERIFY_FLAG%", "" + ca.loadVerifyFlag());
        JavaFileObject fileObject = processingEnv.getFiler().createSourceFile(applicationPackageName + "." + applicationClassName);
        processingEnv.getMessager().printMessage(Diagnostic.Kind.NOTE, "Creating " + fileObject.toUri());
     Writer writer = fileObject.openWriter();
      PrintWriter pw = new PrintWriter(writer);
      pw.print(fileContent);
      pw.flush();
      writer.close();

    }
  }

代码比较简单,可以分三部分理解:

  • 步骤1:首先找到被DefaultLifeCycle标识的Element(为类对象TypeElement),得到该对象的包名,类名等信息,然后通过该对象,拿到@DefaultLifeCycle对象,获取该注解中声明属性的值。

  • 步骤2:读取一个模板文件,读取为字符串,将各个占位符通过步骤1中的值替代。

  • 步骤3:通过JavaFileObject将替换完成的字符串写文件,其实就是本例中的Application对象。

我们看一眼模板文件:

package %PACKAGE%;import com.tencent.tinker.loader.app.TinkerApplication;/**
 *
 * Generated application for tinker life cycle
 *
 */public class %APPLICATION% extends TinkerApplication {

  public %APPLICATION%() {    super(%TINKER_FLAGS%, "%APPLICATION_LIFE_CYCLE%", "%TINKER_LOADER_CLASS%", %TINKER_LOAD_VERIFY_FLAG%);
  }

}

对应我们的SimpleTinkerInApplicationLike

@DefaultLifeCycle(application = ".SimpleTinkerInApplication",
    flags = ShareConstants.TINKER_ENABLE_ALL,
    loadVerifyFlag = false)public class SimpleTinkerInApplicationLike extends ApplicationLike {}

主要就几个占位符:

包名,如果application属性值以点开始,则同包;否则则截取

类名,application属性值中的类名

%TINKER_FLAGS%对应flags

%APPLICATION_LIFE_CYCLE%,编写的ApplicationLike的全路径

“%TINKER_LOADER_CLASS%”,这个值我们没有设置,实际上对应@DefaultLifeCycle的loaderClass属性,默认值为com.tencent.tinker.loader.TinkerLoader

%TINKER_LOAD_VERIFY_FLAG%对应loadVerifyFlag

于是最终生成的代码为:

/**
 *
 * Generated application for tinker life cycle
 *
 */public class SimpleTinkerInApplication extends TinkerApplication {

  public SimpleTinkerInApplication() {    super(7, "com.zhy.tinkersimplein.SimpleTinkerInApplicationLike", "com.tencent.tinker.loader.TinkerLoader", false);
  }

}

tinker这么做的目的,文档上是这么说的:

为了减少错误的出现,推荐使用Annotation生成Application类。

这样大致了解了Application是如何生成的。

接下来我们大致看一下tinker的原理。

四、原理

来源于:https://github.com/Tencent/tinker

tinker贴了一张大致的原理图。

可以看出:

tinker将old.apk和new.apk做了diff,拿到patch.dex,然后将patch.dex与本机中apk的classes.dex做了合并,生成新的classes.dex,运行时通过反射将合并后的dex文件放置在加载的dexElements数组的前面。

运行时替代的原理,其实和Qzone的方案差不多,都是去反射修改dexElements。

两者的差异是:Qzone是直接将patch.dex插到数组的前面;而tinker是将patch.dex与app中的classes.dex合并后的全量dex插在数组的前面。

tinker这么做的目的还是因为Qzone方案中提到的CLASS_ISPREVERIFIED的解决方案存在问题;而tinker相当于换个思路解决了该问题。

接下来我们就从代码中去验证该原理。

本片文章源码分析的两条线:

应用启动时,从默认目录加载合并后的classes.dex

patch下发后,合成classes.dex至目标目录

五、源码分析

(1)加载patch

加载的代码实际上在生成的Application中调用的,其父类为TinkerApplication,在其attachBaseContext中辗转会调用到loadTinker()方法,在该方法内部,反射调用了TinkerLoader的tryLoad方法。

@Overridepublic Intent tryLoad(TinkerApplication app, int tinkerFlag, boolean tinkerLoadVerifyFlag) {
  Intent resultIntent = new Intent();  long begin = SystemClock.elapsedRealtime();
  tryLoadPatchFilesInternal(app, tinkerFlag, tinkerLoadVerifyFlag, resultIntent);  long cost = SystemClock.elapsedRealtime() - begin;
  ShareIntentUtil.setIntentPatchCostTime(resultIntent, cost);  return resultIntent;
}

tryLoadPatchFilesInternal中会调用到loadTinkerJars方法:

private void tryLoadPatchFilesInternal(TinkerApplication app, int tinkerFlag, boolean tinkerLoadVerifyFlag, Intent resultIntent) {  // 省略大量安全性校验代码

  if (isEnabledForDex) {    //tinker/patch.info/patch-641e634c/dex
    boolean dexCheck = TinkerDexLoader.checkComplete(patchVersionDirectory, securityCheck, resultIntent);    if (!dexCheck) {      //file not found, do not load patch
      Log.w(TAG, "tryLoadPatchFiles:dex check fail");      return;
    }
  }  //now we can load patch jar
  if (isEnabledForDex) {    boolean loadTinkerJars = TinkerDexLoader.loadTinkerJars(app, tinkerLoadVerifyFlag, patchVersionDirectory, resultIntent, isSystemOTA);    if (!loadTinkerJars) {
      Log.w(TAG, "tryLoadPatchFiles:onPatchLoadDexesFail");      return;
    }
  }
}

TinkerDexLoader.checkComplete主要是用于检查下发的meta文件中记录的dex信息(meta文件,可以查看生成patch的产物,在assets/dex-meta.txt),检查meta文件中记录的dex文件信息对应的dex文件是否存在,并把值存在TinkerDexLoader的静态变量dexList中。

TinkerDexLoader.loadTinkerJars传入四个参数,分别为application,tinkerLoadVerifyFlag(注解上声明的值,传入为false),patchVersionDirectory当前version的patch文件夹,intent,当前patch是否仅适用于art。

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH)public static boolean loadTinkerJars(Application application, boolean tinkerLoadVerifyFlag, 
  String directory, Intent intentResult, boolean isSystemOTA) {
    PathClassLoader classLoader = (PathClassLoader) TinkerDexLoader.class.getClassLoader();

    String dexPath = directory + "/" + DEX_PATH + "/";
    File optimizeDir = new File(directory + "/" + DEX_OPTIMIZE_PATH);

    ArrayList legalFiles = new ArrayList<>();    final boolean isArtPlatForm = ShareTinkerInternals.isVmArt();    for (ShareDexDiffPatchInfo info : dexList) {      //for dalvik, ignore art support dex
      if (isJustArtSupportDex(info)) {        continue;
      }
      String path = dexPath + info.realName;
      File file = new File(path);

      legalFiles.add(file);
    }    // just for art
    if (isSystemOTA) {
      parallelOTAResult = true;
      parallelOTAThrowable = null;
      Log.w(TAG, "systemOTA, try parallel oat dexes!!!!!");

      TinkerParallelDexOptimizer.optimizeAll(
        legalFiles, optimizeDir,        new TinkerParallelDexOptimizer.ResultCallback() {
        }
      );

    SystemClassLoaderAdder.installDexes(application, classLoader, optimizeDir, legalFiles);    return true;
  }

找出仅支持art的dex,且当前patch是否仅适用于art时,并行去loadDex。

关键是最后的installDexes:

@SuppressLint("NewApi")public static void installDexes(Application application, PathClassLoader loader, File dexOptDir, List files)  throws Throwable {  if (!files.isEmpty()) {
    ClassLoader classLoader = loader;    if (Build.VERSION.SDK_INT >= 24) {
      classLoader = AndroidNClassLoader.inject(loader, application);
    }    //because in dalvik, if inner class is not the same classloader with it wrapper class.
    //it won't fail at dex2opt
    if (Build.VERSION.SDK_INT >= 23) {
      V23.install(classLoader, files, dexOptDir);
    } else if (Build.VERSION.SDK_INT >= 19) {
      V19.install(classLoader, files, dexOptDir);
    } else if (Build.VERSION.SDK_INT >= 14) {
      V14.install(classLoader, files, dexOptDir);
    } else {
      V4.install(classLoader, files, dexOptDir);
    }    //install done
    sPatchDexCount = files.size();
    Log.i(TAG, "after loaded classloader: " + classLoader + ", dex size:" + sPatchDexCount);    if (!checkDexInstall(classLoader)) {      //reset patch dex
      SystemClassLoaderAdder.uninstallPatchDex(classLoader);      throw new TinkerRuntimeException(ShareConstants.CHECK_DEX_INSTALL_FAIL);
    }
  }
}

这里实际上就是根据不同的系统版本,去反射处理dexElements。

我们看一下V19的实现(主要我看了下本机只有个22的源码~):

private static final class V19 {

  private static void install(ClassLoader loader, List additionalClassPathEntries,
                File optimizedDirectory)    throws IllegalArgumentException, IllegalAccessException,
    NoSuchFieldException, InvocationTargetException, NoSuchMethodException, IOException {

    Field pathListField = ShareReflectUtil.findField(loader, "pathList");
    Object dexPathList = pathListField.get(loader);
    ArrayList suppressedExceptiOns= new ArrayList();
    ShareReflectUtil.expandFieldArray(dexPathList, "dexElements", makeDexElements(dexPathList,      new ArrayList(additionalClassPathEntries), optimizedDirectory,
      suppressedExceptions));    if (suppressedExceptions.size() > 0) {      for (IOException e : suppressedExceptions) {
        Log.w(TAG, "Exception in makeDexElement", e);        throw e;
      }
    }
  }
}

找到PathClassLoader(BaseDexClassLoader)对象中的pathList对象

根据pathList对象找到其中的makeDexElements方法,传入patch相关的对应的实参,返回Element[]对象

拿到pathList对象中原本的dexElements方法

步骤2与步骤3中的Element[]数组进行合并,将patch相关的dex放在数组的前面

最后将合并后的数组,设置给pathList

这里其实和Qzone的提出的方案基本是一致的。如果你以前未了解过Qzone的方案,可以参考此文:

Android 热补丁动态修复框架小结

(2)合成patch

这里的入口为:

 TinkerInstaller.onReceiveUpgradePatch(getApplicationContext(),
        Environment.getExternalStorageDirectory().getAbsolutePath() + "/patch_signed.apk");

上述代码会调用DefaultPatchListener中的onPatchReceived方法:

# DefaultPatchListener@Overridepublic int onPatchReceived(String path) {  int returnCode = patchCheck(path);  if (returnCode == ShareConstants.ERROR_PATCH_OK) {
    TinkerPatchService.runPatchService(context, path);
  } else {
    Tinker.with(context).getLoadReporter().onLoadPatchListenerReceiveFail(new File(path), returnCode);
  }  return returnCode;

}

首先对tinker的相关配置(isEnable)以及patch的合法性进行检测,如果合法,则调用TinkerPatchService.runPatchService(context, path);

public static void runPatchService(Context context, String path) {  try {
    Intent intent = new Intent(context, TinkerPatchService.class);
    intent.putExtra(PATCH_PATH_EXTRA, path);
    intent.putExtra(RESULT_CLASS_EXTRA, resultServiceClass.getName());
    context.startService(intent);
  } catch (Throwable throwable) {
    TinkerLog.e(TAG, "start patch service fail, exception:" + throwable);
  }
}

TinkerPatchService是IntentService的子类,这里通过intent设置了两个参数,一个是patch的路径,一个是resultServiceClass,该值是调用Tinker.install的时候设置的,默认为DefaultTinkerResultService.class。由于是IntentService,直接看onHandleIntent即可,如果你对IntentService陌生

@Overrideprotected void onHandleIntent(Intent intent) {  final Context cOntext= getApplicationContext();
  Tinker tinker = Tinker.with(context);


  String path = getPatchPathExtra(intent);

  File patchFile = new File(path);  boolean result;

  increasingPriority();
  PatchResult patchResult = new PatchResult();

  result = upgradePatchProcessor.tryPatch(context, path, patchResult);

  patchResult.isSuccess = result;
  patchResult.rawPatchFilePath = path;
  patchResult.costTime = cost;
  patchResult.e = e;

  AbstractResultService.runResultService(context, patchResult, getPatchResultExtra(intent));

}

比较清晰,主要关注upgradePatchProcessor.tryPatch方法,调用的是UpgradePatch.tryPatch。ps:这里有个有意思的地方increasingPriority(),其内部实现为:

private void increasingPriority() {
  TinkerLog.i(TAG, "try to increase patch process priority");  try {
    Notification notification = new Notification();    if (Build.VERSION.SDK_INT <18) {
      startForeground(notificationId, notification);
    } else {
      startForeground(notificationId, notification);      // start InnerService
      startService(new Intent(this, InnerService.class));
    }
  } catch (Throwable e) {
    TinkerLog.i(TAG, "try to increase patch process priority error:" + e);
  }
}

如果你对“保活”这个话题比较关注,那么对这段代码一定不陌生,主要是利用系统的一个漏洞来启动一个前台Service。

下面继续回到tryPatch方法:

# UpgradePatch@Overridepublic boolean tryPatch(Context context, String tempPatchPath, PatchResult patchResult) {
  Tinker manager = Tinker.with(context);  final File patchFile = new File(tempPatchPath);  //it is a new patch, so we should not find a exist
  SharePatchInfo oldInfo = manager.getTinkerLoadResultIfPresent().patchInfo;
  String patchMd5 = SharePatchFileUtil.getMD5(patchFile);  //use md5 as version
  patchResult.patchVersion = patchMd5;
  SharePatchInfo newInfo;  //already have patch
  if (oldInfo != null) {
    newInfo = new SharePatchInfo(oldInfo.oldVersion, patchMd5, Build.FINGERPRINT);
  } else {
    newInfo = new SharePatchInfo("", patchMd5, Build.FINGERPRINT);
  }  //check ok, we can real recover a new patch
  final String patchDirectory = manager.getPatchDirectory().getAbsolutePath();  final String patchName = SharePatchFileUtil.getPatchVersionDirectory(patchMd5);  final String patchVersiOnDirectory= patchDirectory + "/" + patchName;  //copy file
  File destPatchFile = new File(patchVersionDirectory + "/" + SharePatchFileUtil.getPatchVersionFile(patchMd5));  // check md5 first
  if (!patchMd5.equals(SharePatchFileUtil.getMD5(destPatchFile))) {
    SharePatchFileUtil.copyFileUsingStream(patchFile, destPatchFile);
  }  //we use destPatchFile instead of patchFile, because patchFile may be deleted during the patch process
  if (!DexDiffPatchInternal.tryRecoverDexFiles(manager, signatureCheck, context, patchVersionDirectory, 
        destPatchFile)) {
    TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, try patch dex failed");    return false;
  }  return true;
}

拷贝patch文件拷贝至私有目录,然后调用DexDiffPatchInternal.tryRecoverDexFiles

protected static boolean tryRecoverDexFiles(Tinker manager, ShareSecurityCheck checker, Context context,
                        String patchVersionDirectory, File patchFile) {
  String dexMeta = checker.getMetaContentMap().get(DEX_META_FILE);  boolean result = patchDexExtractViaDexDiff(context, patchVersionDirectory, dexMeta, patchFile);  return result;
}

直接看patchDexExtractViaDexDiff

private static boolean patchDexExtractViaDexDiff(Context context, String patchVersionDirectory, String meta, final File patchFile) {
  String dir = patchVersionDirectory + "/" + DEX_PATH + "/";  if (!extractDexDiffInternals(context, dir, meta, patchFile, TYPE_DEX)) {
    TinkerLog.w(TAG, "patch recover, extractDiffInternals fail");    return false;
  }  final Tinker manager = Tinker.with(context);

  File dexFiles = new File(dir);
  File[] files = dexFiles.listFiles();

  ...files遍历执行:DexFile.loadDex   return true;
}

核心代码主要在extractDexDiffInternals中:

private static boolean extractDexDiffInternals(Context context, String dir, String meta, File patchFile, int type) {  //parse meta
  ArrayList patchList = new ArrayList<>();
  ShareDexDiffPatchInfo.parseDexDiffPatchInfo(meta, patchList);

  File directory = new File(dir);  //I think it is better to extract the raw files from apk
  Tinker manager = Tinker.with(context);
  ZipFile apk = null;
  ZipFile patch = null;

  ApplicationInfo applicatiOnInfo= context.getApplicationInfo();

  String apkPath = applicationInfo.sourceDir; //base.apk
  apk = new ZipFile(apkPath);
  patch = new ZipFile(patchFile);  for (ShareDexDiffPatchInfo info : patchList) {    final String infoPath = info.path;
    String patchRealPath;    if (infoPath.equals("")) {
      patchRealPath = info.rawName;
    } else {
      patchRealPath = info.path + "/" + info.rawName;
    }

    File extractedFile = new File(dir + info.realName);

    ZipEntry patchFileEntry = patch.getEntry(patchRealPath);
    ZipEntry rawApkFileEntry = apk.getEntry(patchRealPath);

    patchDexFile(apk, patch, rawApkFileEntry, patchFileEntry, info, extractedFile);
  }  return true;
}

这里的代码比较关键了,可以看出首先解析了meta里面的信息,meta中包含了patch中每个dex的相关数据。然后通过Application拿到sourceDir,其实就是本机apk的路径以及patch文件;根据mate中的信息开始遍历,其实就是取出对应的dex文件,最后通过patchDexFile对两个dex文件做合并。

private static void patchDexFile(
      ZipFile baseApk, ZipFile patchPkg, ZipEntry oldDexEntry, ZipEntry patchFileEntry,
      ShareDexDiffPatchInfo patchInfo, File patchedDexFile) throws IOException {
  InputStream oldDexStream = null;
  InputStream patchFileStream = null;

  oldDexStream = new BufferedInputStream(baseApk.getInputStream(oldDexEntry));
  patchFileStream = (patchFileEntry != null &#63; new BufferedInputStream(patchPkg.getInputStream(patchFileEntry)) : null);  new DexPatchApplier(oldDexStream, patchFileStream).executeAndSaveTo(patchedDexFile);

}

通过ZipFile拿到其内部文件的InputStream,其实就是读取本地apk对应的dex文件,以及patch中对应dex文件,对二者的通过executeAndSaveTo方法进行合并至patchedDexFile,即patch的目标私有目录。

至于合并算法,这里其实才是tinker比较核心的地方,这个算法跟dex文件格式紧密关联,如果有机会,然后我又能看懂的话,后面会单独写篇博客介绍。此外dodola已经有篇博客进行了介绍:

Tinker Dexdiff算法解析

感兴趣的可以阅读下。

好了,到此我们就大致了解了tinker热修复的原理~~

测试demo地址:

https://github.com/WanAndroid/tinkerTest

当然这里只分析了代码了热修复,后续考虑分析资源以及So的热修、核心的diff算法、以及gradle插件等相关知识~


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 解决微信电脑版无法刷朋友圈问题:使用安卓远程投屏方案
    在工作期间想要浏览微信和朋友圈却不太方便?虽然微信电脑版目前不支持直接刷朋友圈,但通过远程投屏技术,可以轻松实现在电脑上操作安卓设备的功能。 ... [详细]
  • 从零开始构建完整手机站:Vue CLI 3 实战指南(第一部分)
    本系列教程将引导您使用 Vue CLI 3 构建一个功能齐全的移动应用。我们将深入探讨项目中涉及的每一个知识点,并确保这些内容与实际工作中的需求紧密结合。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 尽管某些细分市场如WAN优化表现不佳,但全球运营商路由器和交换机市场持续增长。根据最新研究,该市场预计在2023年达到202亿美元的规模。 ... [详细]
  • Android LED 数字字体的应用与实现
    本文介绍了一种适用于 Android 应用的 LED 数字字体(digital font),并详细描述了其在 UI 设计中的应用场景及其实现方法。这种字体常用于视频、广告倒计时等场景,能够增强视觉效果。 ... [详细]
  • RecyclerView初步学习(一)
    RecyclerView初步学习(一)ReCyclerView提供了一种插件式的编程模式,除了提供ViewHolder缓存模式,还可以自定义动画,分割符,布局样式,相比于传统的ListVi ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 新冠肺炎疫情期间,各大银行积极利用手机银行平台,满足客户在金融与生活多方面的需求。线上服务不仅激活了防疫相关的民生场景,还推动了银行通过互联网思维进行获客、引流与经营。本文探讨了银行在找房、买菜、打卡、教育等领域的创新举措。 ... [详细]
  • 本文总结了在使用Ionic 5进行Android平台APK打包时遇到的问题,特别是针对QRScanner插件的改造。通过详细分析和提供具体的解决方法,帮助开发者顺利打包并优化应用性能。 ... [详细]
  • XNA 3.0 游戏编程:从 XML 文件加载数据
    本文介绍如何在 XNA 3.0 游戏项目中从 XML 文件加载数据。我们将探讨如何将 XML 数据序列化为二进制文件,并通过内容管道加载到游戏中。此外,还会涉及自定义类型读取器和写入器的实现。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
author-avatar
百度地震姜常宏
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有