热门标签 | HotTags
当前位置:  开发笔记 > Android > 正文

AndroidGPU版本的model.nb

Tensorflowlite可以使用TfLiteDelegate运行androidGPU模式。paddle-lite中好像生成的litemodel都是forc

Tensorflow lite可以使用TfLiteDelegate 运行android GPU模式。
paddle-lite中好像生成的lite model都是for cpu的。如果使用Android GPU版本的,model.nb for GPU应该怎么生成?有相关的文档介绍吗?

该提问来源于开源项目:PaddlePaddle/Paddle-Lite

opencl支持的算子比arm的少





   



推荐阅读
  • vivo Y5s配备了联发科Helio P65八核处理器,这款处理器采用12纳米工艺制造,具备两颗高性能Cortex-A75核心和六颗高效能Cortex-A55核心。此外,它还集成了先进的图像处理单元和语音唤醒功能,为用户提供卓越的性能体验。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 随着技术的发展,市场上的安卓模拟器数量已大幅减少,目前主要集中在几款表现优异的产品上。本文将对当前最受欢迎的六款安卓模拟器进行详细评测,帮助用户选择最适合自己的工具。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • yikesnews第11期:微软Office两个0day和一个提权0day
    点击阅读原文可点击链接根据法国大选被黑客干扰,发送了带漏洞的文档Trumps_Attack_on_Syria_English.docx而此漏洞与ESET&FireEy ... [详细]
  • 三星Galaxy S8/S8+即将登场,全面解析新旗舰
    3月29日晚11点,备受瞩目的三星Galaxy S8/S8+将正式发布。作为三星在Note 7爆炸事件后的重磅产品,S8/S8+不仅承载着恢复消费者信心的重任,其创新的设计和技术也备受期待。 ... [详细]
  • 新手指南:在Windows 10上搭建深度学习与PyTorch开发环境
    本文详细记录了一名新手在Windows 10操作系统上搭建深度学习环境的过程,包括安装必要的软件和配置环境变量等步骤,旨在帮助同样初入该领域的读者避免常见的错误。 ... [详细]
  • 从Android 3.0 (API Level 11)起,Android的2D渲染管道得到了改进,以更好地支持硬件加速。本文介绍了如何启用和管理硬件加速,以及其对应用性能的影响。 ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 图像分类算法的优化策略与实践
    本文探讨了《Bag of Tricks for Image Classification with Convolutional Neural Networks》论文中的多项技术,旨在通过具体实例和实验验证,提高卷积神经网络在图像分类任务中的性能。文章详细介绍了从模型训练加速、网络结构调整到训练参数优化等多个方面的改进方法。 ... [详细]
  • 本文详细介绍了非极大值抑制(Non-Maximum Suppression, NMS)算法的原理及其在目标检测中的应用,并提供了C++语言的具体实现代码。NMS算法通过筛选出高得分的检测框并移除重叠度高的其他检测框,有效提高了检测结果的准确性和可靠性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
author-avatar
lululove8_530
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有