作者:DYongLi | 来源:互联网 | 2023-09-12 11:39
Anchor Free系列模型
简介
目前主流的检测算法大体分为两类: single-stage和two-stage,其中single-stage的经典算法包括SSD, YOLO等,two-stage方法有RCNN系列模型,两大类算法在PaddleDetection Model Zoo中均有给出,它们的共同特点是先定义一系列密集的,大小不等的anchor区域,再基于这些先验区域进行分类和回归,这种方式极大的受限于anchor自身的设计。随着CornerNet的提出,涌现了多种anchor free方法,PaddleDetection也集成了一系列anchor free算法。
模型库与基线
算法细节
CornerNet-Squeeze
简介: CornerNet-Squeeze 在Cornernet基础上进行改进,预测目标框的左上角和右下角的位置,同时参考SqueezeNet和MobileNet的特点,优化了CornerNet骨干网络Hourglass-104,大幅提升了模型预测速度,相较于原版YOLO-v3,在训练精度和推理速度上都具备一定优势。
特点:
使用corner_pooling获取候选框左上角和右下角的位置
替换Hourglass-104中的residual
block为SqueezeNet中的fire-module 替换第二层3x3卷积为3x3深度可分离卷积