热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AlexNet识别眼疾iChallengePM

内容都是百度AIstudio的内容,我只是在这里做个笔记,不是原创。AlexNet通过上面的实际训练可以看到,虽然LeNet在手写数字

内容都是百度AIstudio的内容,我只是在这里做个笔记,不是原创。

AlexNet

通过上面的实际训练可以看到,虽然LeNet在手写数字识别数据集上取得了很好的结果,但在更大的数据集上表现却并不好。自从1998年LeNet问世以来,接下来十几年的时间里,神经网络并没有在计算机视觉领域取得很好的结果,反而一度被其它算法所超越,原因主要有两方面,一是神经网络的计算比较复杂,对当时计算机的算力来说,训练神经网络是件非常耗时的事情;另一方面,当时还没有专门针对神经网络做算法和训练技巧的优化,神经网络的收敛性是件非常困难的事情。

随着技术的进步和发展,计算机的算力越来越强大,尤其是在GPU并行计算能力的推动下,复杂神经网络的计算也变得更加容易实施。另一方面,互联网上涌现出越来越多的数据,极大的丰富了数据库。同时也有越来越多的研究人员开始专门针对神经网络做算法和模型的优化,Alex Krizhevsky等人提出的AlexNet以很大优势获得了2012年ImageNet比赛的冠军。这一成果极大的激发了业界对神经网络的兴趣,开创了使用深度神经网络解决图像问题的途径,随后也在这一领域涌现出越来越多的优秀工作。

AlexNet与LeNet相比,具有更深的网络结构,包含5层卷积3层全连接,同时使用了如下三种方法改进模型的训练过程:

  • 数据增多:深度学习中常用的一种处理方式,通过对训练随机加一些变化,比如平移、缩放、裁剪、旋转、翻转或者增减亮度等,产生一系列跟原始图片相似但又不完全相同的样本,从而扩大训练数据集。通过这种方式,可以随机改变训练样本,避免模型过度依赖于某些属性,能从一定程度上抑制过拟合。

  • 使用Dropout抑制过拟合

  • 使用ReLU激活函数少梯度消失现象

# -*- coding:utf-8 -*-# 导入需要的包
import paddle
import paddle.fluid as fluid
import numpy as np
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear# 定义 AlexNet 网络结构
class AlexNet(fluid.dygraph.Layer):def __init__(self, num_classes=1):super(AlexNet, self).__init__()# AlexNet与LeNet一样也会同时使用卷积和池化层提取图像特征# 与LeNet不同的是激活函数换成了‘relu’self.conv1 = Conv2D(num_channels=3, num_filters=96, filter_size=11, stride=4, padding=5, act='relu')self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')self.conv2 = Conv2D(num_channels=96, num_filters=256, filter_size=5, stride=1, padding=2, act='relu')self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')self.conv3 = Conv2D(num_channels=256, num_filters=384, filter_size=3, stride=1, padding=1, act='relu')self.conv4 = Conv2D(num_channels=384, num_filters=384, filter_size=3, stride=1, padding=1, act='relu')self.conv5 = Conv2D(num_channels=384, num_filters=256, filter_size=3, stride=1, padding=1, act='relu')self.pool5 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')self.fc1 = Linear(input_dim=12544, output_dim=4096, act='relu')self.drop_ratio1 = 0.5self.fc2 = Linear(input_dim=4096, output_dim=4096, act='relu')self.drop_ratio2 = 0.5self.fc3 = Linear(input_dim=4096, output_dim=num_classes)def forward(self, x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.conv3(x)x = self.conv4(x)x = self.conv5(x)x = self.pool5(x)x = fluid.layers.reshape(x, [x.shape[0], -1])x = self.fc1(x)# 在全连接之后使用dropout抑制过拟合x= fluid.layers.dropout(x, self.drop_ratio1)x = self.fc2(x)# 在全连接之后使用dropout抑制过拟合x = fluid.layers.dropout(x, self.drop_ratio2)x = self.fc3(x)return x

 

with fluid.dygraph.guard():model = AlexNet()train(model)

 


推荐阅读
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 深入解析 Django 中用户模型的自定义方法与技巧 ... [详细]
  • 本项目在Java Maven框架下,利用POI库实现了Excel数据的高效导入与导出功能。通过优化数据处理流程,提升了数据操作的性能和稳定性。项目已发布至GitHub,当前最新版本为0.0.5。该项目不仅适用于小型应用,也可扩展用于大型企业级系统,提供了灵活的数据管理解决方案。GitHub地址:https://github.com/83945105/holygrail,Maven坐标:`com.github.83945105:holygrail:0.0.5`。 ... [详细]
  • Android 图像色彩处理技术详解
    本文详细探讨了 Android 平台上的图像色彩处理技术,重点介绍了如何通过模仿美图秀秀的交互方式,利用 SeekBar 实现对图片颜色的精细调整。文章展示了具体的布局设计和代码实现,帮助开发者更好地理解和应用图像处理技术。 ... [详细]
  • 本题库精选了Java核心知识点的练习题,旨在帮助学习者巩固和检验对Java理论基础的掌握。其中,选择题部分涵盖了访问控制权限等关键概念,例如,Java语言中仅允许子类或同一包内的类访问的访问权限为protected。此外,题库还包括其他重要知识点,如异常处理、多线程、集合框架等,全面覆盖Java编程的核心内容。 ... [详细]
  • 深入解析Tomcat:开发者的实用指南
    深入解析Tomcat:开发者的实用指南 ... [详细]
  • MySQL性能优化与调参指南【数据库管理】
    本文详细探讨了MySQL数据库的性能优化与参数调整技巧,旨在帮助数据库管理员和开发人员提升系统的运行效率。内容涵盖索引优化、查询优化、配置参数调整等方面,结合实际案例进行深入分析,提供实用的操作建议。此外,还介绍了常见的性能监控工具和方法,助力读者全面掌握MySQL性能优化的核心技能。 ... [详细]
  • POJ 1696: 空间蚂蚁算法优化与分析
    针对 POJ 1696 的空间蚂蚁算法进行了深入的优化与分析。本研究通过改进算法的时间复杂度和空间复杂度,显著提升了算法的效率。实验结果表明,优化后的算法在处理大规模数据时表现优异,能够有效减少计算时间和内存消耗。此外,我们还对算法的收敛性和稳定性进行了详细探讨,为实际应用提供了可靠的理论支持。 ... [详细]
  • 提升工作效率:掌握这些技巧,IDEA 使用效率翻倍 | IDEA 高效操作指南
    提升工作效率:掌握这些技巧,IDEA 使用效率翻倍 | IDEA 高效操作指南 ... [详细]
  • 进程(Process)是指计算机中程序对特定数据集的一次运行活动,是系统资源分配与调度的核心单元,构成了操作系统架构的基础。在早期以进程为中心的计算机体系结构中,进程被视为程序的执行实例,其状态和控制信息通过任务描述符(task_struct)进行管理和维护。本文将深入探讨进程的概念及其关键数据结构task_struct,解析其在操作系统中的作用和实现机制。 ... [详细]
  • 如何构建基于Spring MVC框架的Java Web应用项目
    在构建基于Spring MVC框架的Java Web应用项目时,首先应创建一个新的动态Web项目。接着,需将必要的JAR包导入至WebContent/WEB-INF/lib目录下,确保包括Spring核心库及相关依赖。如遇缺失的JAR包,可向社区求助或通过Maven等工具自动下载。正确配置后,即可开始搭建应用结构与功能模块。 ... [详细]
  • 如何迅速识别并解决Gradle项目中的Jar包名称冲突问题?
    在处理Gradle项目时,经常会遇到Jar包名称冲突的问题。本文介绍了如何快速识别并解决此类冲突,特别是在使用fastjson的Feature.OrderedField功能时。通过添加特定参数,可以有效避免JSON字段乱序的情况,确保数据的一致性和可靠性。此外,文章还提供了详细的步骤和示例代码,帮助开发者高效地解决Jar包冲突问题。 ... [详细]
  • voc生成xml 代码
    目录 lxmlwindows安装 读取示例 可视化 生成示例 上面是代码,下面有调用示例 api调用代码,其实只有几行:这个生成代码也很简 ... [详细]
  • Angular 2 中组件间通信的多种方法与实践
    在Angular 2中,组件间的通信是开发过程中不可或缺的一部分。本文将详细介绍多种实现组件间通信的方法,并结合实际案例进行实践分析。通过这些方法,开发者可以更加高效地管理组件之间的数据传递和状态同步,提升应用的整体性能和可维护性。文中还将探讨每种方法的优缺点及其适用场景,帮助读者在实际项目中做出最佳选择。 ... [详细]
author-avatar
我就是我
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有