热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AI学习进阶(5):深入解析NumPy的核心功能与应用

在之前的系列中,我们探讨了多个关于AI学习的基础知识点。本篇将重点深入解析NumPy这一关键库的核心功能及其广泛应用。即使您对之前提到的例子印象模糊,也无妨,我们将从头开始,详细分析其代码结构与实现逻辑,如`importnumpyasnp`等基础语句,帮助您全面理解NumPy在数据处理与科学计算中的重要作用。

在前面我们测试过一个例子,这个例子不知道你是否还记得它的内容,如果没有记得也没有关系,现在到我们去研究这个例子的时候了,它的前两行是这样写的:

  1. import tensorflow as tf  
  2. import numpy as np 
如果你的python还是不懂,强烈建议先学习一下 课程,这样会跟上我们的进度的。在这两行代码里,第一行代码就是导入(import)顶顶大名的tensorflow库,第二行代码是导入数值计算著名库numpy。在这里都使用了别名tf、np,在as后面的名称就是声明为别名,后面代码再使用这两个库时,就可以简化,不用写这么多字符了,这是所有程序人员的聪明之处,毕竟时间就是金钱,如果多浪费一些时间在代码的输入上,是跟不上思路的。更何况可以减轻手指的劳动强度,何乐而不为呢。这种库的导入,就像C语言里包含文件头是一样的,都是为了使用库的功能。

从这里看到,numpy是什么东西呢?一脸迷茫的样子。不用焦急,接着下来就深入地学习一下库numpy。NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。其实深度学习就是计算量非常的数学运算,所以使用numpy是很合适的工具。

接着就来练习一下numpy库的使用,首先来查看一下numpy的版本:

#python 3.5.3  蔡军生
#http://edu.csdn.net/course/detail/2592
#
import numpy as np

print("numpy version:", np.version.version)
接着下来把这个例子运行一下,输出结果如下:


如果你的python IDE里不能运行这个例子,说明没有安装numpy这个库。



1. C++标准模板库从入门到精通 

http://edu.csdn.net/course/detail/3324

2.跟老菜鸟学C++

http://edu.csdn.net/course/detail/2901

3. 跟老菜鸟学python

http://edu.csdn.net/course/detail/2592

4. 在VC2015里学会使用tinyxml库

http://edu.csdn.net/course/detail/2590

5. 在Windows下SVN的版本管理与实战 

 http://edu.csdn.net/course/detail/2579

6.Visual Studio 2015开发C++程序的基本使用 

http://edu.csdn.net/course/detail/2570

7.在VC2015里使用protobuf协议

http://edu.csdn.net/course/detail/2582

8.在VC2015里学会使用MySQL数据库

http://edu.csdn.net/course/detail/2672



推荐阅读
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • JUnit下的测试和suite
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • Requests库的基本使用方法
    本文介绍了Python中Requests库的基础用法,包括如何安装、GET和POST请求的实现、如何处理Cookies和Headers,以及如何解析JSON响应。相比urllib库,Requests库提供了更为简洁高效的接口来处理HTTP请求。 ... [详细]
  • Web动态服务器Python基本实现
    Web动态服务器Python基本实现 ... [详细]
  • 在OpenCV 3.1.0中实现SIFT与SURF特征检测
    本文介绍如何在OpenCV 3.1.0版本中通过Python 2.7环境使用SIFT和SURF算法进行图像特征点检测。由于这些高级功能在OpenCV 3.0.0及更高版本中被移至额外的contrib模块,因此需要特别处理才能正常使用。 ... [详细]
  • Jenkins API当前未直接提供获取任务构建队列长度的功能,因此需要通过解析HTML页面来间接实现这一需求。 ... [详细]
  • 本文介绍如何在阿里云环境中利用 Docker 容器化技术部署一个简单的 Flask Web 应用,并确保其可通过互联网访问。内容涵盖 Python 代码编写、Dockerfile 配置、镜像构建及容器运行等步骤。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 在Python编程中,掌握高级技巧对于提升代码效率和可读性至关重要。本文重点探讨了生成器和迭代器的应用,这两种工具不仅能够优化内存使用,还能简化复杂数据处理流程。生成器通过按需生成数据,避免了大量数据加载对内存的占用,而迭代器则提供了一种优雅的方式来遍历集合对象。此外,文章还深入解析了这些高级特性的实际应用场景,帮助读者更好地理解和运用这些技术。 ... [详细]
author-avatar
柯洁豪雅伯育瑋
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有