热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

2021-2022ACM集训队月度编程挑战赛第二轮:最大值与最小值的选择

在2021-2022ACM集训队月度编程挑战赛第二轮中,题目“最大值与最小值的选择”要求参赛者处理一个包含n个元素的数组,并给定一个整数k。任务是通过选择特定的子数组,计算并返回这些子数组的最大值和最小值之间的差值。该问题考验了选手对数组操作和优化算法的理解与应用能力。

F: max or min

题意:
给你一个n个数的数组和一个k给你一个n个数的数组和一个knk
1<&#61;n,k<&#61;1e5,1 <&#61; n , k <&#61; 1e5 ,1<&#61;n,k<&#61;1e5,
a1,a2,......ana1,a2,......ana1,a2,......an
1<&#61;ai<&#61;n1 <&#61; ai <&#61; n1<&#61;ai<&#61;n
求一个最长区间[l,r]求一个最长区间[l,r][l,r]
满足这个区间的最大值−最小值<&#61;k满足这个区间的最大值-最小值<&#61;k<&#61;k
思路&#xff1a;
假设当前区间为mid假设当前区间为midmid
如果存在长度为mid的区间满足最大值−最小值<&#61;k如果存在长度为mid的区间满足最大值-最小值<&#61;kmid<&#61;k
说明mid可以变大说明mid可以变大mid
否则mid变小否则mid变小mid

因此考虑二分查找mid因此考虑二分查找midmid
时间复杂度logn时间复杂度lognlogn

查询区间最大值和最小值可以考虑查询区间最大值和最小值可以考虑
树状数组/st表/线段树树状数组/st表/线段树/st/线

线段树查询nlogn总时间复杂度nlognlogn线段树查询nlogn总时间复杂度nlognlogn线nlognnlognlogn
st表查询o1总时间复杂度nlognst表查询o1总时间复杂度nlognsto1nlogn
树状数组与线段树类似树状数组与线段树类似线

其实还有个很妙的做法其实还有个很妙的做法
set&#43;双指针动态维护nlognset&#43;双指针动态维护 nlognset&#43;nlogn
每次假设i这个下标为区间右端点每次假设i这个下标为区间右端点i
找到最大的一个左端点找到最大的一个左端点
同时更新答案同时更新答案
方法一方法一
时间复杂度&#xff1a;线段树&#43;二分Onloglogn线段树&#43;二分Onloglogn线&#43;Onloglogn

#include
#include
#include
#include using namespace std;const int N &#61; 200010;int n , m , k ;
struct Node
{int l, r;int v , minv ; // 区间[l, r]中的最大值和最小值
}tr[N * 4];
int a[N];void pushup(int u) // 由子节点的信息&#xff0c;来计算父节点的信息
{tr[u].v &#61; max(tr[u<<1].v,tr[u<<1|1].v);tr[u].minv &#61; min(tr[u<<1].minv,tr[u<<1|1].minv);
}void build(int u, int l, int r)
{if(l &#61;&#61; r) tr[u] &#61; {l,r,a[r],a[r]};else{tr[u] &#61; {l, r};int mid &#61; r &#43; l >> 1 ;build(u << 1 , l , mid ) , build(u << 1 | 1 , mid &#43; 1 , r);pushup(u);}
}int query(int u, int l, int r)
{if(tr[u].l >&#61; l && tr[u].r <&#61; r) return tr[u].v ;int v &#61; -1e9 ;int mid &#61; tr[u].l &#43; tr[u].r >> 1 ;if(l <&#61; mid) v &#61; max(v,query(u << 1 , l ,r));if(r > mid) v &#61; max(v,query(u << 1 | 1 , l , r));return v ;
}int query1(int u, int l, int r)
{if(tr[u].l >&#61; l && tr[u].r <&#61; r) return tr[u].minv ;int v &#61; 1e9 ;int mid &#61; tr[u].l &#43; tr[u].r >> 1 ;if(l <&#61; mid) v &#61; min(v,query1(u << 1 , l ,r));if(r > mid) v &#61; min(v,query1(u << 1 | 1 , l , r));return v ;
}bool check(int mid)
{int x &#61; mid ;for(int i &#61; 1 ; i &#43; x - 1 <&#61; n ; i &#43;&#43;){if(query(1,i,i&#43;x-1) - query1(1,i,i&#43;x-1) <&#61; k) return true ;}return false ;
}int main()
{cin >> n >> k ;for(int i &#61; 1 ; i <&#61; n ; i &#43;&#43;) scanf("%d",&a[i]);build(1,1,n);int l &#61; 1 , r &#61; n ;while(l < r){int mid &#61; r &#43; l &#43; 1 >> 1 ;if(check(mid)) l &#61; mid ;else r &#61; mid - 1 ;}cout << l << "\n" ;return 0;
}

方法二方法二
时间复杂度&#xff1a;set&#43;双指针Onlognset&#43;双指针Onlognset&#43;Onlogn

#include
#define sz(x) ((int)(x).size())
using namespace std;
const int N &#61; 1e6 &#43; 10 ;int n , k ;
int a[N] ;signed main()
{cin >> n >> k ;for(int i &#61; 1 ; i <&#61; n ; i &#43;&#43;) scanf("%d",a &#43; i) ;int res &#61; 0 ;multiset<int> q ;for(int i &#61; 1 , j &#61; 1 ; i <&#61; n ; i &#43;&#43;){q.insert(a[i]) ;while(q.size() && *--q.end() - *q.begin() > k && j <&#61; n) {q.erase(q.find(a[j &#43;&#43;])) ;}res &#61; max(res,sz(q)) ;}cout << res << "\n" ;return 0;
}

方法三方法三
时间复杂度&#xff1a;st表&#43;二分Onlognst表&#43;二分Onlognst&#43;Onlogn

#include
using namespace std;
int a[100005],maxn[100005][30],minn[100005][30];
int n,k;
void st_prework(){for(int i&#61;1;i<&#61;n;i&#43;&#43;)maxn[i][0]&#61;minn[i][0]&#61;a[i];int t&#61;log(n)/log(2)&#43;1;for(int j&#61;1;j<t;j&#43;&#43;)for(int i&#61;1;i<&#61;n-(1<<j)&#43;1;i&#43;&#43;){minn[i][j]&#61;min(minn[i][j-1],minn[i&#43;(1<<(j-1))][j-1]);maxn[i][j]&#61;max(maxn[i][j-1],maxn[i&#43;(1<<(j-1))][j-1]);}
}
int getmax(int l,int r){int k&#61;log(r-l&#43;1)/log(2);return max(maxn[l][k],maxn[r-(1<<k)&#43;1][k]);
}
int getmin(int l,int r){int k&#61;log(r-l&#43;1)/log(2);return min(minn[l][k],minn[r-(1<<k)&#43;1][k]);
}
int main()
{cin>>n>>k;for(int i&#61;1;i<&#61;n;i&#43;&#43;)scanf("%d",&a[i]);st_prework();int anss&#61;0;for(int i&#61;1;i<&#61;n;i&#43;&#43;){int l&#61;i,r&#61;n;while(l<r){int mid&#61;(l&#43;r&#43;1)/2;int ans&#61;getmax(i,mid)-getmin(i,mid);if(ans<&#61;k){l&#61;mid;}else {r&#61;mid-1;}}anss&#61;max(anss,l-i&#43;1);}cout<<anss<<endl;
}


推荐阅读
  • 在稀疏直接法视觉里程计中,通过优化特征点并采用基于光度误差最小化的灰度图像线性插值技术,提高了定位精度。该方法通过对空间点的非齐次和齐次表示进行处理,利用RGB-D传感器获取的3D坐标信息,在两帧图像之间实现精确匹配,有效减少了光度误差,提升了系统的鲁棒性和稳定性。 ... [详细]
  • 题目:图像处理(HDU1828,计算周长并集,利用线段树与离散化技术进行扫描) ... [详细]
  • 本周课程涵盖了高精度计算、前缀和及差分技术。在高精度计算部分,我们将探讨如何处理任意进制的数值运算,包括但不限于正数的加法、减法和乘法。通过调整基数,可以灵活应对不同进制的需求。前缀和与差分技术则主要用于高效解决数组和区间查询问题,提升算法性能。 ... [详细]
  • Prim算法在处理稠密图时表现出色,尤其适用于边数远多于顶点数的情形。传统实现的时间复杂度为 \(O(n^2)\),但通过引入优先队列进行优化,可以在点数为 \(m\)、边数为 \(n\) 的情况下显著降低时间复杂度,提高算法效率。这种优化方法不仅能够加速最小生成树的构建过程,还能在大规模数据集上保持良好的性能表现。 ... [详细]
  • 计算 n 叉树中各节点子树的叶节点数量分析 ... [详细]
  • BZOJ4240 Gym 102082G:贪心算法与树状数组的综合应用
    BZOJ4240 Gym 102082G 题目 "有趣的家庭菜园" 结合了贪心算法和树状数组的应用,旨在解决在有限时间和内存限制下高效处理复杂数据结构的问题。通过巧妙地运用贪心策略和树状数组,该题目能够在 10 秒的时间限制和 256MB 的内存限制内,有效处理大量输入数据,实现高性能的解决方案。提交次数为 756 次,成功解决次数为 349 次,体现了该题目的挑战性和实际应用价值。 ... [详细]
  • 本文详细探讨了C语言中`extern`关键字的简易编译方法,并深入解析了预编译、`static`和`extern`的综合应用。通过具体的代码示例,介绍了如何在不同的文件之间共享变量和函数声明,以及这些关键字在编译过程中的作用和影响。文章还讨论了预编译过程中宏定义的使用,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 如何在 Node.js 环境中将 CSV 数据转换为标准的 JSON 文件格式? ... [详细]
  • 本文详细探讨了OpenCV中人脸检测算法的实现原理与代码结构。通过分析核心函数和关键步骤,揭示了OpenCV如何高效地进行人脸检测。文章不仅提供了代码示例,还深入解释了算法背后的数学模型和优化技巧,为开发者提供了全面的理解和实用的参考。 ... [详细]
  • BZOJ 1835: 基站位置选择问题(动态规划与线段树优化) ... [详细]
  • 在进行网络编程时,准确获取本地主机的IP地址是一项基本但重要的任务。Winsock作为20世纪90年代初由Microsoft与多家公司共同制定的Windows平台网络编程接口,为开发者提供了一套高效且易用的工具。通过Winsock,开发者可以轻松实现网络通信功能,并准确获取本地主机的IP地址,从而确保应用程序在网络环境中的稳定运行。此外,了解Winsock的工作原理及其API函数的使用方法,有助于提高开发效率和代码质量。 ... [详细]
  • 使用cpphttplib构建HTTP服务器以处理带有查询参数的URL请求 ... [详细]
  • 本文作为“实现简易版Spring系列”的第五篇,继前文深入探讨了Spring框架的核心技术之一——控制反转(IoC)之后,将重点转向另一个关键技术——面向切面编程(AOP)。对于使用Spring框架进行开发的开发者来说,AOP是一个不可或缺的概念。了解AOP的背景及其基本原理,对于掌握这一技术至关重要。本文将通过具体示例,详细解析AOP的实现机制,帮助读者更好地理解和应用这一技术。 ... [详细]
  • Linux 信号处理全面解析(第六篇)
    本文深入探讨了信号及其来源。信号本质上是对中断机制的软件层面模拟,从原理上看,进程接收到信号与处理器接收到中断请求类似。信号具有异步特性,能够在进程执行过程中随时触发,从而中断当前操作并执行相应的处理程序。文章详细分析了信号的生成、传递和处理机制,并讨论了常见的信号类型及其应用场景。此外,还介绍了如何在 Linux 系统中使用信号进行进程间通信和错误处理,为开发者提供了实用的技术指导。 ... [详细]
  • [LeetCode 257] 二叉树路径详析与实现 ... [详细]
author-avatar
ccM保佑加琳诺爱儿1984f
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有