热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

(others)ICMP报文详解系列

Linuxicmp学习笔记之一icmp协议相关的格式分类:linux网络2014-04-1723:45487人阅读评论(0)收藏举报Linuxicmp功能分析之
 

Linux icmp 学习笔记 之一 icmp协议相关的格式 分类: linux 网络 487人阅读 评论(0) 收藏 举报

Linux icmp功能分析 icmp协议相关的格式

 

ICMP协议是网络层中一个非常重要的协议,其全称为Internet Control Message Protocol(因特网控制报文协议),ICMP协议弥补了IP的缺限,它使用IP协议进行信息传递,向数据包中的源端节点提供发生在网络层的错误信息 反馈。

  在实现中,路由器会使用该协议来报告问题,而主机则会使用该机制来测试目的站是否可达。该报文的最终目的地不是一个应用程序或者目的设备上的用户,而是目的设备上的网际协议软件,一般icmp报文的接收是linux内核里的icmp接收模块来处理的,而icmp请求报文的发送即可以是内核里相关子系统也可以是应用层的程序发送(比如ping应用)。

 

1、  ICMP报文的格式

各种ICMP报文的前32bits都是三个长度固定的字段,为8bit的type字段、8bit的code字段、16bit的校验和字段(包括icmp数据字段的校验和),而对于不同类型的icmp报文,其余下字段的含义则是不同的。

 

a)       type类型

icmp类型目前有40个,下面几个是比较常用的,也是目前linux支持的类型。

回显应答(ECHO-REPLY

不可到达

源站抑制

重定向

回显请求(ECHO-REQUEST

11 数据报超时

12 参数失灵

13 时间戳请求

14 时间戳应答

15 信息请求(已不再使用)

16 信息应答(已不再使用)

17 地址掩码请求(已不再使用)

18 地址掩码应答(已不再使用)

对于 以上类型,比较重要的有:回显请求与应答(type 0、8)、不可到达(3)、源站抑制(4)、路由重定向(5)、时间戳请求与应答(13、14)

 

 

2、 主要的ICMP格式

a)      回显请求与应答

其中type值表示是一个回显请求或应答,code值为0,而identifier在linux的实现为进程pid(因为ping请求是应用程序,通过该值能够确认是机器上的哪一个应用程序执行的ping操作,能够对进行的接收数据进行匹配操作),而sequence则为一个计数器,主要是为每一个回显请求数据包设置序列值。Option是可选数据,其大小是可变的。

 

TYPE(8/0)

CODE(0)

Checksum

identifier

Sequence

Option

 

b)     目的站不可达

TYPE(3)

CODE(0-15)

Checksum

Not used (must set 0)

Option

 

由于目的站不可达的原因很多,所以需要用code来进行进一步细分。对于option字段,其值为ip头部(包括可选项)加上原始ip数据部分的前8个字节。

而code的定义如下:

#define ICMP_NET_UNREACH0 /* Network Unreachable */

#define ICMP_HOST_UNREACH1 /* Host Unreachable */

#define ICMP_PROT_UNREACH2 /* Protocol Unreachable */

#define ICMP_PORT_UNREACH3 /* Port Unreachable */

#define ICMP_FRAG_NEEDED4 /* Fragmentation Needed/DF set */

#define ICMP_SR_FAILED5 /* Source Route failed */

#define ICMP_NET_UNKNOWN6

#define ICMP_HOST_UNKNOWN7

#define ICMP_HOST_ISOLATED8

#define ICMP_NET_ANO9

#define ICMP_HOST_ANO10

#define ICMP_NET_UNR_TOS11

#define ICMP_HOST_UNR_TOS12

#define ICMP_PKT_FILTERED13 /* Packet filtered */

#define ICMP_PREC_VIOLATION14 /* Precedence violation */

#define ICMP_PREC_CUTOFF15 /* Precedence cut off */

#define NR_ICMP_UNREACH15 /* instead of hardcoding immediate value */

 

c)重定向

 

TYPE(5)

CODE(0-3)

Checksum

Route’s ip

Option

对于option字段,其值为ip头部(包括可选项)加上原始ip数据部分的前8个字节。

第二个32bits代表路由器的wan側地址。

Code类型如下:

#defineICMP_REDIR_NET        0     /* Redirect Net                     */

#defineICMP_REDIR_HOST             1     /* Redirect Host            */

#defineICMP_REDIR_NETTOS  2     /* Redirect Net for TOS        */

#defineICMP_REDIR_HOSTTOS       3     /* Redirect Host for TOS      */

重定向报文仅限于在直接连接到同一网络上的路由器与主机间交互。

 

d)数据包超时

因为每一个ip数据包都有一个ttl计数器,即跳数计数器,当数据包中的ttl的值为0时,就丢弃数据包,并发送一个数据包超时的icmp 报文。下面即是icmp 数据包超时报文的格式

 

TYPE(11)

CODE(0-1)

Checksum

Not used(must set 0)

Option

对于option字段,其值为ip头部(包括可选项)加上原始ip数据部分的前8个字节。

 

对于命令traceroute(windows 下为tracert),即是根据ttl来实现查找到目的站点所有跳点的ip地址的。即先发送3个ttl为1的数据包,根据接收到的icmp 数据包超时报文获取到第一个下一跳地址;然后再发送3个ttl为的数据包,根据接收到的数据包超时报文获取到第二个下一跳地址;依此类推直到找到所有的跳点地址或者已经到了ttl的max值还没有到目的站点则程序返回。

 

基本上这4个icmp报文是最重要的了。

3、 linux中icmp相关的数据结构

 

#defineICMP_ECHOREPLY              0     /* Echo Reply               */

#defineICMP_DEST_UNREACH       3     /* Destination Unreachable    */

#defineICMP_SOURCE_QUENCH    4     /* Source Quench          */

#defineICMP_REDIRECT          5     /* Redirect (change route)     */

#defineICMP_ECHO           8     /* Echo Request                   */

#defineICMP_TIME_EXCEEDED     11    /* Time Exceeded          */

#defineICMP_PARAMETERPROB     12    /* Parameter Problem           */

#defineICMP_TIMESTAMP        13    /* Timestamp Request           */

#defineICMP_TIMESTAMPREPLY    14    /* Timestamp Reply              */

#defineICMP_INFO_REQUEST  15    /* Information Request         */

#defineICMP_INFO_REPLY              16    /* Information Reply            */

#defineICMP_ADDRESS           17    /* Address Mask Request              */

#defineICMP_ADDRESSREPLY 18    /* Address Mask Reply          */

#defineNR_ICMP_TYPES          18

 

 

/*Codes for UNREACH. */

#defineICMP_NET_UNREACH  0     /* Network Unreachable        */

#defineICMP_HOST_UNREACH       1     /* Host Unreachable             */

#defineICMP_PROT_UNREACH       2     /* Protocol Unreachable        */

#defineICMP_PORT_UNREACH       3     /* Port Unreachable              */

#defineICMP_FRAG_NEEDED  4     /* Fragmentation Needed/DF set   */

#defineICMP_SR_FAILED         5     /* Source Route failed          */

#defineICMP_NET_UNKNOWN 6

#defineICMP_HOST_UNKNOWN     7

#defineICMP_HOST_ISOLATED       8

#defineICMP_NET_ANO           9

#defineICMP_HOST_ANO         10

#defineICMP_NET_UNR_TOS   11

#defineICMP_HOST_UNR_TOS 12

#defineICMP_PKT_FILTERED   13    /* Packet filtered */

#defineICMP_PREC_VIOLATION     14    /* Precedence violation */

#defineICMP_PREC_CUTOFF    15    /* Precedence cut off */

#defineNR_ICMP_UNREACH           15    /* instead of hardcoding immediate value */

 

/*Codes for REDIRECT. */

#defineICMP_REDIR_NET        0     /* Redirect Net                     */

#defineICMP_REDIR_HOST             1     /* Redirect Host            */

#defineICMP_REDIR_NETTOS  2     /* Redirect Net for TOS        */

#defineICMP_REDIR_HOSTTOS       3     /* Redirect Host for TOS      */

 

/*Codes for TIME_EXCEEDED. */

#defineICMP_EXC_TTL             0     /* TTL count exceeded          */

#defineICMP_EXC_FRAGTIME 1     /* Fragment Reass time exceeded  */

 

Icmp头部定义:

structicmphdr {

  __u8           type;

  __u8           code;

  __sum16     checksum;

  union {

       struct {

              __be16    id;

              __be16    sequence;

       } echo;

       __be32    gateway;

       struct {

              __be16    __unused;

              __be16    mtu;

       } frag;

  } un;

};

在该数据结构中,前32bits的定义是一样的,而后面32bits的定义,因回显请求与应答、重定向等报文定义不同而有不同的含义。

 

发送icmp报文相关的数据结构。

structicmp_bxm {

       struct sk_buff *skb;//接收到的icmp报文

       int offset;//选项数据在icmp数据中的偏移量

       int data_len;//icmp数据报文长度

 

       struct {

              struct icmphdr icmph;/icmp头部/

              __be32           times[3];

       } data;

       int head_len;//icmp头部长度

       struct ip_options replyopts;//存储的接收icmp报文的选项数据,待发送时使用

       unsigned char  optbuf[40];

};


 

Linux icmp 学习笔记 之二 icmp数据处理流程分类: linux 网络 925人阅读 评论(0) 收藏 举报


 

在分析icmp数据包处理流程之前,我有如下疑问:

1、为什么要为每一个cpu创建一个仅用于发送icmp报文的socket呢,不使用socket不也是可以把icmp报文发送出去吗?

2、ping的工作原理是什么呢?

3、Traceroute的工作原理是什么呢?

 

一、imcp协议的初始化

1)ICMP接收处理函数的初始化

我们知道icmp协议是附属于ip层的3层协议,且是将icmp数据存放于ip数据包的数据部分的3层协议。而tcp、udp也是将tcp、udp数据存放于ip数据包的数据部分的4层协议。

虽然icmp与tcp等协议不属于同一个网络层,但是都是在3层ip协议处理完以后,才会交给icmp、tcp的处理函数去处理。因此在linux中,都是调用inet_add_protocol将其接收处理函数相关的数据结构添加到数组inet_protos中去的(关于三、四层接收数据处理函数的注册相关的知识请参看http://blog.csdn.net/lickylin/article/details/22900401)。

       Icmp的接收处理函数相关的结构体定义如下:

static const struct net_protocol icmp_protocol = {

    .handler =       icmp_rcv,

    .no_policy =   1,

    .netns_ok =     1,

};

在inet_init初始化时,即会调用inet_add_protocol将tcp、udp、icmp、igmp等协议相关的接收处理结构体注册,并保存在数组inet_protos中。

 

当接收的数据包的协议为icmp时,即会调用icmp_rcv进行后续处理。

 

 

2)  icmp协议模块的初始化

主要是调用函数register_pernet_subsys(关于该函数的工作流程,请参看http://blog.csdn.net/lickylin/article/details/18013879),将icmp协议模块注册到网络命令空间中,并调用ops->init进行协议初始化相关的代码。

对于icmp,其pernet_operations的定义如下:

static structpernet_operations __net_initdata icmp_sk_ops = {

       .init = icmp_sk_init,

       .exit = icmp_sk_exit,

};

在调用register_pernet_subsys将icmp协议模块注册到网络命名空间后,即会调用icmp_sk_init进行icmp协议初始化相关的功能,我们分析下icmp_sk_init。

 

 

该函数主要实现以下功能:

/*

1、  为每一个cpu创建一个用于发生icmp数据包的socket

2、  设置一些限制条件,包括速率限制、接收数据包的条件等

*/

static int __net_init icmp_sk_init(struct net *net)

{

    int i, err;

 

/*为icmp_sk申请空间,该icmp_sk数组中存放了所有cpu相关的socket指针*/

    net->ipv4.icmp_sk =

           kzalloc(nr_cpu_ids *sizeof(struct sock *), GFP_KERNEL);

    if (net->ipv4.icmp_sk ==NULL)

           return -ENOMEM;

 

    /*为每一个cpu创建一个RAW套接字*/

    for_each_possible_cpu(i) {

           struct sock *sk;

           /*

创建一个 RAW 类型的套接字,并调用(*sk)->sk_prot->unhash,将该socket从hash链表raw_v4_hashinfo.ht[RAW_HTABLE_SIZE]中删除与该socket的关联

*/

           err =inet_ctl_sock_create(&sk, PF_INET,

                                   SOCK_RAW, IPPROTO_ICMP, net);

           if (err <0)

                  goto fail;

 

           net->ipv4.icmp_sk[i]= sk;

 

           /* Enough space for2 64K ICMP packets, including

            * sk_buff struct overhead.

            */

           sk->sk_sndbuf =

                  (2 * ((64 *1024) + sizeof(struct sk_buff)));

 

           /*

            * Speedup sock_wfree()

            */

           sock_set_flag(sk,SOCK_USE_WRITE_QUEUE);

           inet_sk(sk)->pmtudisc= IP_PMTUDISC_DONT;

    }

 

    net->ipv4.sysctl_icmp_echo_ignore_all= 0;

    /*忽略广播的echo请求 */

    net->ipv4.sysctl_icmp_echo_ignore_broadcasts= 1;

 

    /* 忽略广播的icmp 错误回复信息*/

    net->ipv4.sysctl_icmp_ignore_bogus_error_respOnses= 1;

 

    net->ipv4.sysctl_icmp_ratelimit= 1 * HZ; //速率限制值

/*进行速率限制的icmp数据包类型,主要有dest unreachable 、source quench time exceeded 、parameter problem*/

    net->ipv4.sysctl_icmp_ratemask= 0x1818;

    net->ipv4.sysctl_icmp_errors_use_inbound_ifaddr= 0;

 

    return 0;

 

fail:

    for_each_possible_cpu(i)

           inet_ctl_sock_destroy(net->ipv4.icmp_sk[i]);

    kfree(net->ipv4.icmp_sk);

    return err;

}

 

疑问:当新创建的socket时,为什么要将其从hash链表raw_v4_hashinfo.ht[RAW_HTABLE_SIZE]中删除呢?

 

因为我们只使用这个socket进行发送数据包,而不需要使用该socket接收数据包。所以此处将其从hash链表raw_v4_hashinfo.ht[RAW_HTABLE_SIZE]中删除。

为什么不使用该socket直接接收icmp报文呢,我的理解是如果使用该socket接收报文,就需要在kernel创建一个内核线程,用于侦听是否有数据到达该socket,然后再进行处理。

而直接使用内核四层协议接收处理函数的注册流程,可以很方便的就能对接收的icmp报文进行处理,而且使用的内核资源比较少,所以对于kernel创建的socket,其接收操作基本上是使用内核四层协议接收处理函数的注册流程实现的。而对于应用层创建的icmp相关的socket则不会执行上述操作。

 

 

 

二、ICMP协议的接收处理函数

Icmp接收处理函数为icmp_rcv,下面分析这个函数。

 

主要功能:

1、  对数据包进行合理性检查

2、  根据icmp的类型,

int icmp_rcv(struct sk_buff *skb)

{

       structicmphdr *icmph;

       structrtable *rt = skb_rtable(skb);

       structnet *net = dev_net(rt->u.dst.dev);

 

       /*

       基于策略的高扩展性的网络安全架构,对于这个内核子架构不清楚

     此处分析不了,跳过。

       */

       if(!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {

              structsec_path *sp = skb_sec_path(skb);

              intnh;

 

              if(!(sp && sp->xvec[sp->len - 1]->props.flags &

                             XFRM_STATE_ICMP))

                     gotodrop;

 

              if(!pskb_may_pull(skb, sizeof(*icmph) + sizeof(struct iphdr)))

                     gotodrop;

 

              nh= skb_network_offset(skb);

              skb_set_network_header(skb,sizeof(*icmph));

 

              if(!xfrm4_policy_check_reverse(NULL, XFRM_POLICY_IN, skb))

                     gotodrop;

 

              skb_set_network_header(skb,nh);

       }

 

       ICMP_INC_STATS_BH(net,ICMP_MIB_INMSGS);

       /*验证校验和信息*/

       switch(skb->ip_summed) {

       caseCHECKSUM_COMPLETE:

              if(!csum_fold(skb->csum))

                     break;

              /*fall through */

       caseCHECKSUM_NONE:

              skb->csum= 0;

              if(__skb_checksum_complete(skb))

                     gotoerror;

       }

 

       if(!pskb_pull(skb, sizeof(*icmph)))

              gotoerror;

       /*获取icmp头部*/

       icmph= icmp_hdr(skb);

 

       ICMPMSGIN_INC_STATS_BH(net,icmph->type);

       /*

       对于不支持的icmp报文,直接丢掉

        */

       if(icmph->type > NR_ICMP_TYPES)

              gotoerror;

 

 

       /*

       判断是否丢弃掉多播类型的icmp数据包

       1、只处理echo、timestamp、address_mask_request、address_mask_reply类型的多播icmp数据包

        */

 

       if(rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {

              /*

               *    RFC1122: 3.2.2.6 An ICMP_ECHO to broadcast MAY be

               *      silently ignored (we let user decide with asysctl).

               *    RFC1122: 3.2.2.8 An ICMP_TIMESTAMP MAY be silently

               *      discarded if to broadcast/multicast.

               */

              if((icmph->type == ICMP_ECHO ||

                   icmph->type == ICMP_TIMESTAMP)&&

                 net->ipv4.sysctl_icmp_echo_ignore_broadcasts) {

                     gotoerror;

              }

              if(icmph->type != ICMP_ECHO &&

                  icmph->type != ICMP_TIMESTAMP &&

                  icmph->type != ICMP_ADDRESS &&

                  icmph->type != ICMP_ADDRESSREPLY) {

                     gotoerror;

              }

       }

       /*根据icmp数据包类型,调用相应的处理函数*/

       icmp_pointers[icmph->type].handler(skb);

 

drop:

       kfree_skb(skb);

       return0;

error:

       ICMP_INC_STATS_BH(net,ICMP_MIB_INERRORS);

       gotodrop;

}

 

 

 

对于icmp_pointers的定义如下:

/*

 *    This table is the definition of how wehandle ICMP.

 */

static const struct icmp_controlicmp_pointers[NR_ICMP_TYPES + 1] = {

       [ICMP_ECHOREPLY]= {

              .handler= icmp_discard,

       },

       [1]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [2]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [ICMP_DEST_UNREACH]= {

              .handler= icmp_unreach,

              .error= 1,

       },

       [ICMP_SOURCE_QUENCH]= {

              .handler= icmp_unreach,

              .error= 1,

       },

       [ICMP_REDIRECT]= {

              .handler= icmp_redirect,

              .error= 1,

       },

       [6]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [7]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [ICMP_ECHO]= {

              .handler= icmp_echo,

       },

       [9]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [10]= {

              .handler= icmp_discard,

              .error= 1,

       },

       [ICMP_TIME_EXCEEDED]= {

              .handler= icmp_unreach,

              .error= 1,

       },

       [ICMP_PARAMETERPROB]= {

              .handler= icmp_unreach,

              .error= 1,

       },

       [ICMP_TIMESTAMP]= {

              .handler= icmp_timestamp,

       },

       [ICMP_TIMESTAMPREPLY]= {

              .handler= icmp_discard,

       },

       [ICMP_INFO_REQUEST]= {

              .handler= icmp_discard,

       },

       [ICMP_INFO_REPLY]= {

              .handler= icmp_discard,

       },

       [ICMP_ADDRESS]= {

              .handler= icmp_address,

       },

       [ICMP_ADDRESSREPLY]= {

              .handler= icmp_address_reply,

       },

};

 

目前内核处理的icmp报文有icmp_unreach、icmp_address、icmp_address_reply、icmp_timestamp、icmp_echo、icmp_redirect。

 

 

icmp_echo

 

/*

该函数主要是将icmp的type设置为ICMP_ECHOREPLY,并调用icmp_reply将该数据包发送出去

*/

 

static void icmp_echo(struct sk_buff *skb)

{

       structnet *net;

 

       net= dev_net(skb_dst(skb)->dev);

       if(!net->ipv4.sysctl_icmp_echo_ignore_all) {

              structicmp_bxm icmp_param;

 

              icmp_param.data.icmph    =*icmp_hdr(skb);

              icmp_param.data.icmph.type= ICMP_ECHOREPLY;

              icmp_param.skb              = skb;

              icmp_param.offset     = 0;

              icmp_param.data_len        =skb->len;

              icmp_param.head_len       =sizeof(struct icmphdr);

              icmp_reply(&icmp_param,skb);

       }

}

 

Timestamp

/*

设置时间戳的值,并将icmp的type设置为ICMP_TIMESTAMPREPLY,并通过icmp_reply发送出去

*/

static void icmp_timestamp(struct sk_buff*skb)

{

       structtimespec tv;

       structicmp_bxm icmp_param;

       /*

        *    Tooshort.

        */

       if(skb->len <4)

              gotoout_err;

 

       /*

        *    Fillin the current time as ms since midnight UT:

        */

       getnstimeofday(&tv);

       icmp_param.data.times[1]= htonl((tv.tv_sec % 86400) * MSEC_PER_SEC +

                                    tv.tv_nsec / NSEC_PER_MSEC);

       icmp_param.data.times[2]= icmp_param.data.times[1];

       if(skb_copy_bits(skb, 0, &icmp_param.data.times[0], 4))

              BUG();

       icmp_param.data.icmph    =*icmp_hdr(skb);

       icmp_param.data.icmph.type= ICMP_TIMESTAMPREPLY;

       icmp_param.data.icmph.code= 0;

       icmp_param.skb              = skb;

       icmp_param.offset     = 0;

       icmp_param.data_len       =0;

       icmp_param.head_len       =sizeof(struct icmphdr) + 12;

       icmp_reply(&icmp_param,skb);

out:

       return;

out_err:

       ICMP_INC_STATS_BH(dev_net(skb_dst(skb)->dev),ICMP_MIB_INERRORS);

       gotoout;

}

 

 

Unreach 数据处理

 

功能:根据icmp中有效载荷数据的值,调用传输层的错误处理函数进行处理

static void icmp_unreach(struct sk_buff*skb)

{

       structiphdr *iph;

       structicmphdr *icmph;

       inthash, protocol;

       conststruct net_protocol *ipprot;

       u32info = 0;

       structnet *net;

 

       net= dev_net(skb_dst(skb)->dev);

 

       /*

        *    Incompleteheader ?

        *   Onlychecks for the IP header, there should be an

        *    additionalcheck for longer headers in upper levels.

        */

 

       if(!pskb_may_pull(skb, sizeof(struct iphdr)))

              gotoout_err;

 

       /*获取icmp首部*/

       icmph= icmp_hdr(skb);

       iph   = (struct iphdr *)skb->data;

 

       /*判断ip首部是否完整*/

       if(iph->ihl <5) /* Mangled header, drop. */

              gotoout_err;

 

       /*仅处理type类型为3或者12的数据包

       1、当类型为3时,仅处理code为frag needed的报文

           a)当系统不支持pmtu时,丢弃该数据包

           b)当系统支持pmtu时,调用ip_rt_frag_needed修改pmtu的值

       2、当type类型为12时,则通过icmph->un.gateway获取出错偏移值(相对于数据包)

       */

       if(icmph->type == ICMP_DEST_UNREACH) {

              switch(icmph->code & 15) {

              caseICMP_NET_UNREACH:

              caseICMP_HOST_UNREACH:

              caseICMP_PROT_UNREACH:

              caseICMP_PORT_UNREACH:

                     break;

              caseICMP_FRAG_NEEDED:

                     if(ipv4_config.no_pmtu_disc) {

                            LIMIT_NETDEBUG(KERN_INFO"ICMP: %pI4: fragmentation needed and DF set.\n",

                                          &iph->daddr);

                     }else {

                            info= ip_rt_frag_needed(net, iph,

                                                  ntohs(icmph->un.frag.mtu),

                                                  skb->dev);

                            if(!info)

                                   gotoout;

                     }

                     break;

              caseICMP_SR_FAILED:

                     LIMIT_NETDEBUG(KERN_INFO"ICMP: %pI4: Source Route Failed.\n",

                                   &iph->daddr);

                     break;

              default:

                     break;

              }

              if(icmph->code > NR_ICMP_UNREACH)

                     gotoout;

       }else if (icmph->typ

推荐阅读
  • 本文详细介绍了如何在 CentOS 7 及其衍生发行版(如 Red Hat, Oracle, Scientific Linux 7)上安装和完全卸载 GitLab。包括安装必要的依赖关系、配置防火墙、安装 GitLab 软件包以及常见问题的解决方法。 ... [详细]
  • 本文详细探讨了Spring框架中遇到的NoSuchBeanDefinitionException异常,具体涉及com.thinkplatform.dao.UserLogDao Bean未定义的问题,并提供了相应的解决方案。 ... [详细]
  • 大华股份2013届校园招聘软件算法类试题D卷
    一、填空题(共17题,每题3分,总共51分)1.设有inta5,*b,**c,执行语句c&b,b&a后,**c的值为________答:5 ... [详细]
  • 整理于2020年10月下旬:总结过去,展望未来Itistoughtodayandtomorrowwillbetougher.butthedayaftertomorrowisbeau ... [详细]
  • 本文详细介绍了如何使用Layui框架实现动态和静态数据表的分页功能,具有较高的实用性和参考价值。适合需要开发管理后台的开发人员参考。 ... [详细]
  • 本文介绍了编程语言的基本分类,包括机器语言、汇编语言和高级语言的特点及其优缺点。随后详细讲解了Python解释器的安装与配置方法,并探讨了Python变量的定义、使用及内存管理机制。 ... [详细]
  • 在开发板的启动选项中看到如下两行:7:LoadBootLoadercodethenwritetoFlashviaSerial.9:LoadBootLoadercodethenwri ... [详细]
  • 探索UNIX操作系统的家族树
    通过回顾历史,我们可以更好地理解技术的发展。本文将带你深入了解UNIX操作系统的起源和发展历程,揭示其在现代计算中的重要地位。 ... [详细]
  • 本文详细介绍了如何在Linux系统中使用nslookup命令查询DNS服务器地址,这对于Linux服务器的运维管理是非常重要的基础知识。 ... [详细]
  • 本文探讨了SSD购买后是否需要进行4K对齐的问题,并详细解释了4K对齐的原理及其重要性。通过对比机械硬盘与固态硬盘的结构,文章深入分析了4K对齐对SSD性能的影响,并提供了具体的对齐方法。 ... [详细]
  • 本文将详细探讨PHP中C的作用,并对比其他编程语言如Java和C的特点及其适用场景。 ... [详细]
  • 一关于t1表和testtb的索引设计二把主键放到二级索引的后面,会否占据更多的物理空间?三InnoDB的主键该如何选择,业务ID和自增 ... [详细]
  • Linux中tput命令怎么用
    这篇文章主要介绍Linux中tput命令怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!Linux常用命令tput命令将通过ter ... [详细]
  • 本文详细介绍了如何在Windows操作系统中通过Samba服务访问Red Hat Linux中的资源,包括配置Samba服务器、设置工作组名称、添加用户和共享目录等步骤。 ... [详细]
  • Java作为全球最流行的编程语言之一,应用广泛。本文将详细介绍Java开发的相关岗位及其具体职责,帮助读者更好地了解这一领域的职业发展路径。 ... [详细]
author-avatar
低調浮華
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有