热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

(转)ICCV2015:21篇最火爆研究论文

&
视觉机器人
 
 

ICCV 2015: Twenty one hottest research papers

 

“Geometry vs Recognition” becomes ConvNet-for-X

Computer Vision used to be cleanly separated into two schools: geometry and recognition. Geometric methods like structure from motion and optical flow usually focus on measuring objective real-world quantities like 3D “real-world” distances directly from images and recognition techniques like support vector machines and probabilistic graphical models traditionally focus on perceiving high-level semantic information (i.e., is this a dog or a table) directly from images.

The world of computer vision is changing fast has changed. We now have powerful convolutional neural networks that are able to extract just about anything directly from images. So if your input is an image (or set of images), then there’s probably a ConvNet for your problem.  While you do need a large labeled dataset, believe me when I say that collecting a large dataset is much easier than manually tweaking knobs inside your 100K-line codebase. As we’re about to see, the separation between geometric methods and learning-based methods is no longer easily discernible.

By 2016 just about everybody in the computer vision community will have tasted the power of ConvNets, so let’s take a look at some of the hottest new research directions in computer vision.

ICCV 2015’s Twenty One Hottest Research Papers

ICCV 2015 Twenty one hottest research papers 0
 

This December in Santiago, Chile, the International Conference of Computer Vision 2015 is going to bring together the world’s leading researchers in Computer Vision, Machine Learning, and Computer Graphics.

To no surprise, this year’s ICCV is filled with lots of ConvNets, but this time the applications of these Deep Learning tools are being applied to much much more creative tasks. Let’s take a look at the following twenty one ICCV 2015 research papers, which will hopefully give you a taste of where the field is going.

1. Ask Your Neurons: A Neural-Based Approach to Answering Questions About Images Mateusz Malinowski, Marcus Rohrbach, Mario Fritz

ICCV 2015 Twenty one hottest research papers 1

“We propose a novel approach based on recurrent neural networks for the challenging task of answering of questions about images. It combines a CNN with a LSTM into an end-to-end architecture that predict answers conditioning on a question and an image.”

2. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler

ICCV 2015 Twenty one hottest research papers 2
“To align movies and books we exploit a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book.”

3. Learning to See by Moving Pulkit Agrawal, Joao Carreira, Jitendra Malik
ICCV 2015 Twenty one hottest research papers 3

“We show that using the same number of training images, features learnt using egomotion as supervision compare favourably to features learnt using class-label as supervision on the tasks of scene recognition, object recognition, visual odometry and keypoint matching.”

4. Local Convolutional Features With Unsupervised Training for Image Retrieval Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien Mairal, Florent Perronin, Cordelia Schmid

ICCV 2015 Twenty one hottest research papers 4

“We introduce a deep convolutional architecture that yields patch-level descriptors, as an alternative to the popular SIFT descriptor for image retrieval.”

5. Deep Networks for Image Super-Resolution With Sparse Prior Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, Thomas Huang

ICCV 2015 Twenty one hottest research papers 5

“We show that a sparse coding model particularly designed for super-resolution can be incarnated as a neural network, and trained in a cascaded structure from end to end.”

6. High-for-Low and Low-for-High: Efficient Boundary Detection From Deep Object Features and its Applications to High-Level Vision Gedas Bertasius, Jianbo Shi, Lorenzo Torresani

ICCV 2015 Twenty one hottest research papers 6

“In this work we show how to predict boundaries by exploiting object level features from a pretrained object-classification network.”

7. A Deep Visual Correspondence Embedding Model for Stereo Matching Costs Zhuoyuan Chen, Xun Sun, Liang Wang, Yinan Yu, Chang Huang

ICCV 2015 Twenty one hottest research papers 7

“A novel deep visual correspondence embedding model is trained via Convolutional Neural Network on a large set of stereo images with ground truth disparities. This deep embedding model leverages appearance data to learn visual similarity relationships between corresponding image patches, and explicitly maps intensity values into an embedding feature space to measure pixel dissimilarities.”

8. Im2Calories: Towards an Automated Mobile Vision Food Diary Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban, Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, Kevin P. Murphy

ICCV 2015 Twenty one hottest research papers 8

“We present a system which can recognize the contents of your meal from a single image, and then predict its nutritional contents, such as calories.”

9. Unsupervised Visual Representation Learning by Context Prediction Carl Doersch, Abhinav Gupta, Alexei A. Efros

ICCV 2015 Twenty one hottest research papers 9

“How can one write an objective function to encourage a representation to capture, for example, objects, if none of the objects are labeled?”

10. Deep Neural Decision Forests Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, Samuel Rota Bulò

ICCV 2015 Twenty one hottest research papers 10

“We introduce a stochastic and differentiable decision tree model, which steers the representation learning usually conducted in the initial layers of a (deep) convolutional network.”

11. Conditional Random Fields as Recurrent Neural Networks Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr

ICCV 2015 Twenty one hottest research papers 11

“We formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks.”

12. Flowing ConvNets for Human Pose Estimation in Videos Tomas Pfister, James Charles, Andrew Zisserman

ICCV 2015 Twenty one hottest research papers 12

“We investigate a ConvNet architecture that is able to benefit from temporal context by combining information across the multiple frames using optical flow.”

13. Dense Optical Flow Prediction From a Static Image Jacob Walker, Abhinav Gupta, Martial Hebert

ICCV 2015 Twenty one hottest research papers 13
“Given a static image, P-CNN predicts the future motion of each and every pixel in the image in terms of optical flow. Our P-CNN model leverages the data in tens of thousands of realistic videos to train our model. Our method relies on absolutely no human labeling and is able to predict motion based on the context of the scene.”

14. DeepBox: Learning Objectness With Convolutional Networks Weicheng Kuo, Bharath Hariharan, Jitendra Malik

ICCV 2015 Twenty one hottest research papers 14

“Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method.”

15. Active Object Localization With Deep Reinforcement Learning Juan C. Caicedo, Svetlana Lazebnik

ICCV 2015 Twenty one hottest research papers 15

“This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning.”

16. Predicting Depth, Surface Normals and Semantic Labels With a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

ICCV 2015 Twenty one hottest research papers 16

“We address three different computer vision tasks using a single multiscale convolutional network architecture: depth prediction, surface normal estimation, and semantic labeling.”

17. HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, Yizhou Yu

ICCV 2015 Twenty one hottest research papers 17

“We introduce hierarchical deep CNNs (HD-CNNs) by embedding deep CNNs into a category hierarchy. An HD-CNN separates easy classes using a coarse category classifier while distinguishing difficult classes using fine category classifiers.”

18. FlowNet: Learning Optical Flow With Convolutional NetworksAlexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox

ICCV 2015 Twenty one hottest research papers 18

“We construct appropriate CNNs which are capable of solving the optical flow estimation problem as a supervised learning task.”

19. Understanding Deep Features With Computer-Generated Imagery Mathieu Aubry, Bryan C. Russell

ICCV 2015 Twenty one hottest research papers 19
“Rendered images are presented to a trained CNN and responses for different layers are studied with respect to the input scene factors.”

20. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization Alex Kendall, Matthew Grimes, Roberto Cipolla

ICCV 2015 Twenty one hottest research papers 20

“Our system trains a convolutional neural network to regress the 6-DOF camera pose from a single RGB image in an end-to-end manner with no need of additional engineering or graph optimisation.”

21. Visual Tracking With Fully Convolutional Networks Lijun Wang, Wanli Ouyang, Xiaogang Wang, Huchuan Lu

ICCV 2015 Twenty one hottest research papers 21

“A new approach for general object tracking with fully convolutional neural network.”

Conclusion

While some can argue that the great convergence upon ConvNets is making the field less diverse, it is actually making the techniques easier to comprehend. It is easier to “borrow breakthrough thinking” from one research direction when the core computations are cast in the language of ConvNets. Using ConvNets, properly trained (and motivated!) 21 year old graduate student are actually able to compete on benchmarks, where previously it would take an entire 6-year PhD cycle to compete on a non-trivial benchmark.

See you next week in Chile!


Update (January 13th, 2016)

The following awards were given at ICCV 2015.

Achievement awards

  • PAMI Distinguished Researcher Award (1): Yann LeCun
  • PAMI Distinguished Researcher Award (2): David Lowe
  • PAMI Everingham Prize Winner (1): Andrea Vedaldi for VLFeat
  • PAMI Everingham Prize Winner (2): Daniel Scharstein and Rick Szeliski for the Middlebury Datasets

Paper awards

  • PAMI Helmholtz Prize (1): David MartinCharles FowlkesDoron Tal, and Jitendra Malik for their ICCV 2001 paper “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”.
  • PAMI Helmholtz Prize (2): Serge BelongieJitendra Malik, and Jan Puzicha, for their ICCV 2001 paper “Matching Shapes”.
  • Marr Prize: Peter KontschiederMadalina FiterauAntonio Criminisi, and Samual Rota Bulo, for “Deep Neural Decision Forests”.
  • Marr Prize honorable mention: Saining Xie and Zhuowen Tu for“Holistically-Nested Edge Detection”.
For more information about awards, see  Sebastian Nowozin’s ICCV-day-2 blog post.
 
转载于:http://www.computervisionblog.com/2015/12/iccv-2015-twenty-one-hottest-research.html
如果您对该机器学习、图像视觉算法技术感兴趣,可以关注新浪微博: 视觉机器人

 
 

 
 
 
 

 

 

发表见解

 

(必填)

(必填)

(以便回访)

 
                                         

 

推荐阅读
  • spring boot使用jetty无法启动 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 一、使用Microsoft.Office.Interop.Excel.DLL需要安装Office代码如下:2publicstaticboolExportExcel(S ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • iOS如何实现手势
    这篇文章主要为大家展示了“iOS如何实现手势”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“iOS ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • Android 开发技巧:使用 AsyncTask 实现后台任务与 UI 交互
    本文详细介绍了如何在 Android 应用中利用 AsyncTask 来执行后台任务,并及时将任务进展反馈给用户界面,提高用户体验。 ... [详细]
  • Adversarial Personalized Ranking for Recommendation
    目录概主要内容基础对抗扰动对抗训练细节代码HeX.,HeZ.,DuX.andChuaT.Adversarialpersonalizedrankingforrecommendatio ... [详细]
  • Excel技巧:单元格中显示公式而非结果的解决方法
    本文探讨了在Excel中如何通过简单的方法解决单元格显示公式而非计算结果的问题,包括使用快捷键和调整单元格格式两种方法。 ... [详细]
  • 本文详细介绍了如何在PyQt5中创建简易对话框,包括对话框的基本结构、布局管理以及源代码实现。通过实例代码,展示了如何设置窗口部件、布局方式及对话框的基本操作。 ... [详细]
  • 本文探讨了如何使用Scrapy框架构建高效的数据采集系统,以及如何通过异步处理技术提升数据存储的效率。同时,文章还介绍了针对不同网站采用的不同采集策略。 ... [详细]
  • 编码unicode解决了语言不通的问题.但是.unicode又有一个新问题.由于unicode是万国码.把所有国家的文字都编进去了.这就导致一个unicode占用的空间会很大.原来 ... [详细]
  • 长期从事ABAP开发工作的专业人士,在面对行业新趋势时,往往需要重新审视自己的发展方向。本文探讨了几位资深专家对ABAP未来走向的看法,以及开发者应如何调整技能以适应新的技术环境。 ... [详细]
  • 本文详细介绍了 `org.apache.tinkerpop.gremlin.structure.VertexProperty` 类中的 `key()` 方法,并提供了多个实际应用的代码示例。通过这些示例,读者可以更好地理解该方法在图数据库操作中的具体用途。 ... [详细]
  • 入门指南:使用FastRPC技术连接Qualcomm Hexagon DSP
    本文旨在为初学者提供关于如何使用FastRPC技术连接Qualcomm Hexagon DSP的基础知识。FastRPC技术允许开发者在本地客户端实现远程调用,从而简化Hexagon DSP的开发和调试过程。 ... [详细]
author-avatar
jiuye
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有