热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[免费下载应用]iNeuKernel.Ocr图像数据识别与采集原理和产品化应用

iNeuKernel.Ocr图像数据采集软件,实现了实时自动获得屏幕截图或是应用程序截图、动态增加数据识别标签信息、后台任务自动切片采集数据以及实时转发数据,与iNeuOS工业互联
iNeuKernel.Ocr图像数据采集软件,实现了实时自动获得屏幕截图或是应用程序截图、动态增加数据识别标签信息、后台任务自动切片采集数据以及实时转发数据,与iNeuOS工业互联网操作系统互联互通,完整数据采集、传输、存储、视图建模、分析等应用过程。

目       录

1..... 应用概述... 2

2..... 免费下载试用... 2

3..... 视频介绍... 2

4..... iNeuLink.Ocr图像数据采集应用... 2

5..... 数据上传到iNeuOS工业互联网操作系统... 4

6..... Ocr基本概念... 7

1.   应用概述

  在工业、军工或航天等领域,有些设备及软件系统比较陈旧,但是更换的成本比较高,在实验或生产过程中不能够完整的记录数据,给数据应用和分析造成了很大的障碍,更无法解决实验和生产人员的劳动强度

  通过OCR图像识别的技术可以很好的解决上述问题,但是没有一个完整的产品化的软件实现操作级应用。尽管OCR技术相对比较成熟,除特定应用场景使用外,普及使用率并不高。

  iNeuKernel.Ocr图像数据采集软件,实现了实时自动获得屏幕截图或是应用程序截图、动态增加数据识别标签信息、后台任务自动切片采集数据以及实时转发数据,与iNeuOS工业互联网操作系统互联互通,完整数据采集、传输、存储、视图建模、分析等应用过程。示意如下图:

2.   免费下载试用

  链接:https://pan.baidu.com/s/1joGfBefaBKiFJ1l08N3KZg

  提取码:v242

3.   视频介绍

   视频介绍:iNeuKernel.Ocr 图像数据识别与采集

4.   iNeuLink.Ocr图像数据采集应用

(1)运行的主界面,应用相对简单。如下图:

  (2)配置图源,可以使用快捷键,全屏截图或是程序截图,以便定位数据标签的坐标的相对位置,进行数据提取。如下图:

  (3)增加或编辑识别标签,单击【数据识别】可以用红色方框在图源上标注要误别的数据位置信息,在【数据识别结果】中可以看到识别数据的结果,并且填写数据标签名称。如下图:

  (4)转发数据,可以把识别的数据结果转发给其他系统,填写站点编号、远程IP、远程Port转发周期和是否启用等信息。如下图:

5.   数据上传到iNeuOS工业互联网操作系统

  下载iNeuOS离线安装包,安装过程参见:一键部署。进入系统后,选择桌面【设备模型】,单击左上角小加号图标,增加一个新的设备。选择【服务实例】后面的【编辑】按钮链接,配置【基本设置】和【Socket】,【Socket】默认侦听端口为6699,其他信息一般不需要修改,如下图:

     选择配置好的【服务实例】,并且配置通讯类型、应用协议和选择驱动等,配置如下图:

     选择左上角旋转图标,会重新启动后台服务,应用当前配置好的信息。硬件网关与iNeuOS平台第一次通信时会同步网关的设备和数据点信息,会在当前iNeuOS设备驱动下生成子设备,在子设备上会有iNeuKernel硬件网关的数据点信息。如下图:

    iNeuOS工业互联网试用:试用地址

6.   Ocr基本概念

 (1)OCR的应用场景

   根据OCR的应用场景而言,我们可以大致分成识别特定场景下的专用OCR以及识别多种场景下的通用OCR。就前者而言,证件识别以及车牌识别就是专用OCR的典型案例。针对特定场景进行设计、优化以达到最好的特定场景下的效果展示。那通用的OCR就是使用在更多、更复杂的场景下,拥有比较好的泛性。在这个过程中由于场景的不确定性,比如:图片背景极其丰富、亮度不均衡、光照不均衡、残缺遮挡、文字扭曲、字体多样等等问题,会带来极大的挑战。

 (2)OCR的技术路线

   典型的OCR技术路线如下图所示:

   其中OCR识别的关键路径在于文字检测和文本识别部分,这也是深度学习技术可以充分发挥功效的地方。PaddleHub为大家开源的预训练模型的网络结构是Differentiable Binarization+ CRNN,基于icdar2015数据集下进行的训练。

   首先,DB是一种基于分割的文本检测算法。在各种文本检测算法中,基于分割的检测算法可以更好地处理弯曲等不规则形状文本,因此往往能取得更好的检测效果。但分割法后处理步骤中将分割结果转化为检测框的流程复杂,耗时严重。因此作者提出一个可微的二值化模块(Differentiable Binarization,简称DB),将二值化阈值加入训练中学习,可以获得更准确的检测边界,从而简化后处理流程。DB算法最终在5个数据集上达到了state-of-art的效果和性能。参考论文:Real-time Scene Text Detection with Differentiable Binarization

   下图是DB算法的结构图:

 

 

  接着,我们使用 CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络,是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。参考论文:An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition

   下图是CRNN的网络结构图:

 


物联网&大数据技术 QQ群:54256083
物联网&大数据项目 QQ群:727664080
QQ:504547114
微信:wxzz0151
博客:https://www.cnblogs.com/lsjwq
微信公众号:iNeuOS


推荐阅读
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • Kubernetes Services详解
    本文深入探讨了Kubernetes中的服务(Services)概念,解释了如何通过Services实现Pods之间的稳定通信,以及如何管理没有选择器的服务。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文介绍了在解决Hive表中复杂数据结构平铺化问题后,如何通过创建视图来准确计算广告日志的曝光PV,特别是针对用户对应多个标签的情况。同时,详细探讨了UDF的使用方法及其在实际项目中的应用。 ... [详细]
  • 本文详细介绍了Oracle RMAN中的增量备份机制,重点解析了差异增量和累积增量备份的概念及其在不同Oracle版本中的实现。通过对比两种备份方式的特点,帮助读者选择合适的备份策略。 ... [详细]
  • 尤洋:夸父AI系统——大规模并行训练的深度学习解决方案
    自从AlexNet等模型在计算机视觉领域取得突破以来,深度学习技术迅速发展。近年来,随着BERT等大型模型的广泛应用,AI模型的规模持续扩大,对硬件提出了更高的要求。本文介绍了新加坡国立大学尤洋教授团队开发的夸父AI系统,旨在解决大规模模型训练中的并行计算挑战。 ... [详细]
  • Kubernetes 实践指南:初次体验
    本文介绍了如何通过官方提供的简易示例,快速上手 Kubernetes (K8S),并深入理解其核心概念和操作流程。 ... [详细]
  • 深入解析Nacos服务自动注册机制
    本文将探讨Nacos服务自动注册的具体实现方法,特别是如何通过Spring事件机制完成服务注册。通过对Nacos源码的详细分析,帮助读者理解其背后的原理。 ... [详细]
  • 本教程旨在指导开发者如何在Android应用中通过ViewPager组件实现图片轮播功能,适用于初学者和有一定经验的开发者,帮助提升应用的视觉吸引力。 ... [详细]
  • 择要:Fundebug的JavaScript毛病监控插件同步支撑Vue.js异步毛病监控。Vue.js从降生至今已5年,尤大在本年2月份宣布了严重更新,即Vue2.6。更新包含新增 ... [详细]
  • Mysqlcheck作为MySQL提供的一个实用工具,主要用于数据库表的维护工作,包括检查、分析、修复及优化等操作。本文将详细介绍如何使用Mysqlcheck工具,并提供一些实践建议。 ... [详细]
  • 本文详细介绍了如何在本地环境中安装配置Frida及其服务器组件,以及如何通过Frida进行基本的应用程序动态分析,包括获取应用版本和加载的类信息。 ... [详细]
  • 本文介绍了一个基本的同步Socket程序,演示了如何实现客户端与服务器之间的简单消息传递。此外,文章还概述了Socket的基本工作流程,并计划在未来探讨同步与异步Socket的区别。 ... [详细]
author-avatar
潇潇沐林风_921
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有