热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[纯C#实现]基于BP神经网络的中文手写识别算法

效果展示这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是.OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序

效果展示

这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是.

OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度.这样识别的就是3维的数据了.识别起来简单很多.

最近需要做一个中文手写识别算法.搜索了网上的一些前人作品,发现都是只讲了理论,不讲实际开发.于是打算自己开发一个,并记录开发过程.

由于代码量比较多,这里不会全部贴上来讲解,代码已经放到了gitee,部分地方需对照代码进行观看,下面有URL.


思路

网上关于中文手写识别的文章不多,不过数字OCR方案确有很多.

虽然中文手写识别并不等于OCR,但总归有点关联性.

我发现数字的OCR大概是这么个套路:

神经网络的输出层每一个节点对应一个数字的相似度.而中文不能这么做.因为中文有上万字.

不过这是手写识别,我们有用户写字的时候每一笔的数据,可以先识别笔画.然后再根据笔画,去识别字.


资源获取与数据模型设定

首先我们需要一个字典,用于提供所有中文汉字的笔画顺序,这玩意在百度搜索"字典 mdb"能得到很多(我会放到源码里)

通过查看字典的"笔顺"字段,我们可以看到,字典中的字,笔顺分为了: 横,竖,撇,捺,其它 这5个类型

横竖撇捺好弄,不过这个"其它"有点特别,通过查询.中文的笔画有30多种.

我按照长相,将笔画大体分成了这7种:















































ID笔画名称
0
1
2
3
4㇕㇖⺄横折
5㇗㇙㇞㇟ㄣ㇂ ㇛㇜竖折
6㇡ ㇌横折折折

也就是说,我这里是分成7种来识别的,后续使用的时候,是再转换为5种笔画.

我们将用户输入的笔画顺序识别出来后,经过字符串相似度算法,识别出用户输入的笔画,与字典中每个字的笔画的相似度,然后进行排序.

关于字符串相似度,这里采用的是 levenshtein算法,相关代码可在我的源码中找到.


开发采集工具&采集一些数据

首先我需要采集一些笔画数据,然后交给神经网络,训练神经网络识别能力.

这里开发了一个采集工具,用来采集一些用于训练的数据:

源代码>>

使用方法如下:

保存后会得到一个json文件,里面是采集到的笔画数据:

每个笔画采集30次之后保存,在保存后,请将这个文件改名,然后再重新打开一次软件,采集下一个笔画

把上面表格中的7个笔画每一个采集30次左右(次数不需要完全一样)每个笔画单独采集到一个文件

再额外采集一个用于测试的数据:


训练过程

这里选择BP网络的原因是因为网络上有直接复制即可用的C#代码,毕竟我是用C#开发,基于C#的神经网络代码很少.大部分是基于C或者python的.

我对我找到的BP网络的部分代码进行了修改,训练完后可以把训练结果保存为单个json文件.也可以读取json文件接着训练,或着运用里面的训练结果进行识别.

把上面采集的7个笔画样本放入神经网络训练:

如你所见,我另外开发了一个训练工具,读取前面步骤采集到的笔画数据生成矩阵,给BP网络,进行训练.

矩阵的格式:

**注:我用来训练的矩阵的大小是固定的16*16,以下只是为了说明而做的一个缩小版:**























































































\第0列第1列第2列第3列第4列第5列更多列
第0行0.20.00.00.00.00.0.
第1行0.00.40.00.00.00.0.
第2行0.00.00.60.00.00.0.
第3行0.00.00.00.80.00.0.
第4行0.00.00.00.01.00.0.
第5行0.00.00.00.00.00.0.
更多行.......

注意:我在矩阵中使用0~1之间的浮点数标识出了哪个像素是先画出来的,哪个像素是后画出来的.

不过神经网络输入的矩阵是1维的,所以在代码中可以看到,我写了个GetDim1Matrix方法,将这里面的数据,全部连接到了一起.

在代码中,有一个MatrixData类,这个类用于存放训练或者识别用的数据并进行矩阵的输出,可以在这里面找到生成矩阵的算法.

训练完成后,使用训练结果,对测试数据进行了测试.并生成了训练结果文件:

训练工具源码:

源代码>>


实际使用

识别功能和采集工具做在一起了,将神经网络训练出来的结果"GData.json"文件放进采集工具工程里.运行工程即可.

在实际使用中效果没有想象中的好,笔画相似度高的字比较多,得把字写得比较工整才能识别到,想要获取更好的结果,还需要对方案进行更多的优化才行.


改进计划

目前我比较倾向于这两个方案:



  1. 在测试中有个现象,笔画识别错误率有点高,可能需要修改笔画识别的方式,尝试用别的方式去识别笔画

  2. 我找到的字典有问题,字符虽然很全,但是笔画分类才5种,只分为"横,竖,撇,捺,其它",这个"其它"比较碍事,可以尝试找笔画分类更细的字典来解决这个问题.

如果对这个项目感兴趣或者有更好优化的思路,可以给我留言或者到Q群:801522252与我讨论.



推荐阅读
  • 在当前的软件开发领域,Lua 作为一种轻量级脚本语言,在 .NET 生态系统中的应用逐渐受到关注。本文探讨了 Lua 在 .NET 环境下的集成方法及其面临的挑战,包括性能优化、互操作性和生态支持等方面。尽管存在一定的技术障碍,但通过不断的学习和实践,开发者能够克服这些困难,拓展 Lua 在 .NET 中的应用场景。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 本文介绍了如何使用Visual Studio Code、Sublime Text等编辑器批量删除MATLAB代码中的注释和空行,同时提供了一些高级技巧以确保代码的整洁。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 本文介绍了如何利用 `matplotlib` 库中的 `FuncAnimation` 类将 Python 中的动态图像保存为视频文件。通过详细解释 `FuncAnimation` 类的参数和方法,文章提供了多种实用技巧,帮助用户高效地生成高质量的动态图像视频。此外,还探讨了不同视频编码器的选择及其对输出文件质量的影响,为读者提供了全面的技术指导。 ... [详细]
  • 在JavaWeb开发中,文件上传是一个常见的需求。无论是通过表单还是其他方式上传文件,都必须使用POST请求。前端部分通常采用HTML表单来实现文件选择和提交功能。后端则利用Apache Commons FileUpload库来处理上传的文件,该库提供了强大的文件解析和存储能力,能够高效地处理各种文件类型。此外,为了提高系统的安全性和稳定性,还需要对上传文件的大小、格式等进行严格的校验和限制。 ... [详细]
  • 如何在Linux服务器上配置MySQL和Tomcat的开机自动启动
    在Linux服务器上部署Web项目时,通常需要确保MySQL和Tomcat服务能够随系统启动而自动运行。本文将详细介绍如何在Linux环境中配置MySQL和Tomcat的开机自启动,以确保服务的稳定性和可靠性。通过合理的配置,可以有效避免因服务未启动而导致的项目故障。 ... [详细]
  • 在软件开发过程中,经常需要将多个项目或模块进行集成和调试,尤其是当项目依赖于第三方开源库(如Cordova、CocoaPods)时。本文介绍了如何在Xcode中高效地进行多项目联合调试,分享了一些实用的技巧和最佳实践,帮助开发者解决常见的调试难题,提高开发效率。 ... [详细]
  • 本文介绍了如何使用 Node.js 和 Express(4.x 及以上版本)构建高效的文件上传功能。通过引入 `multer` 中间件,可以轻松实现文件上传。首先,需要通过 `npm install multer` 安装该中间件。接着,在 Express 应用中配置 `multer`,以处理多部分表单数据。本文详细讲解了 `multer` 的基本用法和高级配置,帮助开发者快速搭建稳定可靠的文件上传服务。 ... [详细]
  • 深入解析国内AEB应用:摄像头和毫米波雷达融合技术的现状与前景
    本文作者程建伟,武汉极目智能技术有限公司CEO,入选武汉市“光谷3551人才计划”。文章详细探讨了国内自动紧急制动(AEB)系统中摄像头与毫米波雷达融合技术的现状及未来前景。通过分析当前技术的应用情况、存在的挑战以及潜在的解决方案,作者指出,随着传感器技术的不断进步和算法优化,AEB系统的性能将大幅提升,为交通安全带来显著改善。 ... [详细]
  • 在尝试对 QQmlPropertyMap 类进行测试驱动开发时,发现其派生类中无法正常调用槽函数或 Q_INVOKABLE 方法。这可能是由于 QQmlPropertyMap 的内部实现机制导致的,需要进一步研究以找到解决方案。 ... [详细]
  • 技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统
    技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统 ... [详细]
  • 您的数据库配置是否安全?DBSAT工具助您一臂之力!
    本文探讨了Oracle提供的免费工具DBSAT,该工具能够有效协助用户检测和优化数据库配置的安全性。通过全面的分析和报告,DBSAT帮助用户识别潜在的安全漏洞,并提供针对性的改进建议,确保数据库系统的稳定性和安全性。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
author-avatar
马璐720
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有