"C:\My File\Python\python.exe" C:/workspace/Python/deep-learning/card/程序/C识别码.py
2019-05-09 21:42:01.200659: I C:\Users\User\Source\Repos\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 960M
major: 5 minor: 0 memoryClockRate (GHz) 1.176
pciBusID 0000:01:00.0
Total memory: 2.00GiB
Free memory: 1.65GiB
2019-05-09 21:42:01.201008: I C:\Users\User\Source\Repos\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:976] DMA: 0
2019-05-09 21:42:01.201151: I C:\Users\User\Source\Repos\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:986] 0: Y
2019-05-09 21:42:01.201313: I C:\Users\User\Source\Repos\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0)
2019-05-09 21:42:10.905265: E C:\Users\User\Source\Repos\tensorflow\tensorflow\stream_executor\cuda\cuda_dnn.cc:371] could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
2019-05-09 21:42:10.905511: E C:\Users\User\Source\Repos\tensorflow\tensorflow\stream_executor\cuda\cuda_dnn.cc:375] error retrieving driver version: Unimplemented: kernel reported driver version not implemented on Windows
2019-05-09 21:42:10.906236: E C:\Users\User\Source\Repos\tensorflow\tensorflow\stream_executor\cuda\cuda_dnn.cc:338] could not destroy cudnn handle: CUDNN_STATUS_BAD_PARAM
2019-05-09 21:42:10.906464: F C:\Users\User\Source\Repos\tensorflow\tensorflow\core\kernels\conv_ops.cc:672] Check failed: stream->parent()->GetConvolveAlgorithms( conv_parameters.ShouldIncludeWinogradNonfusedAlgo
Process finished with exit code -1073740791 (0xC0000409)
我的电脑是960M的显卡,跑程序会出现显出不足的问题
那我们就在程序里面控制GPU的占用比,不让他占满就好了,在程序里面加上:
os.environ["CUDA_VISIBLE_DEVICES"] = \'0\' #指定第一块GPU可用
cOnfig= tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 程序最多只能占用指定gpu50%的显存
config.gpu_options.allow_growth = True #程序按需申请内存
sess = tf.Session(cOnfig= config)
就好了,就是会稍微慢点