热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python调用数据集mnist_pythonMNIST手写识别数据调用API的方法

MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练有4个有用的文件:train-images-idx3-ubyte:trainingset

MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练

有4个有用的文件:

train-images-idx3-ubyte: training set images

train-labels-idx1-ubyte: training set labels

t10k-images-idx3-ubyte: test set images

t10k-labels-idx1-ubyte: test set labels

The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。

下面给出load数据集的代码:

import os

import struct

import numpy as np

import matplotlib.pyplot as plt

def load_mnist():

'''

Load mnist data

http://yann.lecun.com/exdb/mnist/

60000 training examples

10000 test sets

Arguments:

kind: 'train' or 'test', string charater input with a default value 'train'

Return:

xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28

xxx_labels: class labels for each image, (0-9)

'''

root_path = '/home/cc/deep_learning/data_sets/mnist'

train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')

train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')

test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')

test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')

with open(train_labels_path, 'rb') as lpath:

# '>' denotes bigedian

# 'I' denotes unsigned char

magic, n = struct.unpack('>II', lpath.read(8))

#loaded = np.fromfile(lpath, dtype = np.uint8)

train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

with open(train_images_path, 'rb') as ipath:

magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))

loaded = np.fromfile(train_images_path, dtype = np.uint8)

# images start from the 16th bytes

train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)

with open(test_labels_path, 'rb') as lpath:

# '>' denotes bigedian

# 'I' denotes unsigned char

magic, n = struct.unpack('>II', lpath.read(8))

#loaded = np.fromfile(lpath, dtype = np.uint8)

test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

with open(test_images_path, 'rb') as ipath:

magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))

loaded = np.fromfile(test_images_path, dtype = np.uint8)

# images start from the 16th bytes

test_images = loaded[16:].reshape(len(test_labels), 784)

return train_images, train_labels, test_images, test_labels

再看看图片集是什么样的:

def test_mnist_data():

'''

Just to check the data

Argument:

none

Return:

none

'''

train_images, train_labels, test_images, test_labels = load_mnist()

fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)

ax =ax.flatten()

for i in range(10):

img = train_images[i][:].reshape(28, 28)

ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')

print('corresponding labels = %d' %train_labels[i])

if __name__ == '__main__':

test_mnist_data()

跑出的结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。



推荐阅读
author-avatar
版中凌菱
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有