热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

mysql实现的雪花算法

这篇文章主要介绍了利用mysql实现的雪花算法案例,一起跟随小编过来看看吧,希望对大家有所帮助。

雪花算法就是使用64位long类型的数据存储id,最高位一位存储0或者1,0代表整数,1代表负数,一般都是0,所以最高位不变,41位存储毫秒级时间戳,10位存储机器码(包括5位datacenterId和5位workerId),12存储序列号。这样最大2的10次方的机器,也就是1024台机器,最多每毫秒每台机器产生2的12次方也就是4096个id。(下面有代码实现)

但是一般我们没有那么多台机器,所以我们也可以使用53位来存储id。为什么要用53位?

因为我们几乎都是跟web页面打交道,就需要跟js打交道,js支持最大的整型范围为53位,超过这个范围就会丢失精度,53之内可以直接由js读取,超过53位就需要转换成字符串才能保证js处理正确。53存储的话,32位存储秒级时间戳,5位存储机器码,16位存储序列化,这样每台机器每秒可以生产65536个不重复的id。

2、缺点

由于雪花算法严重依赖时间,所以当发生服务器时钟回拨的问题是会导致可能产生重复的id。当然几乎没有公司会修改服务器时间,修改以后会导致各种问题,公司宁愿新加一台服务器也不愿意修改服务器时间,但是不排除特殊情况。

如何解决时钟回拨的问题?可以对序列化的初始值设置步长,每次触发时钟回拨事件,则其初始步长就加1w,可以在下面代码的第85行来实现,将sequence的初始值设置为10000。

三、代码实现

64位的代码实现:

package com.yl.common;
/**
 * Twitter_Snowflake
* SnowFlake的结构如下(每部分用-分开):
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L <<41) / (1000L * 60 * 60 * 24 * 365) = 69
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 */ public class SnowflakeIdWorker { // ==============================Fields=========================================== /** 开始时间截 (2020-01-01) */ private final long twepoch = 1577808000000L; /** 机器id所占的位数 */ private final long workerIdBits = 5L; /** 数据标识id所占的位数 */ private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */ private final long maxWorkerId = -1L ^ (-1L < maxWorkerId || workerId <0) { throw new IllegalArgumentException(String.format("worker Id can&#39;t be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId <0) { throw new IllegalArgumentException(String.format("datacenter Id can&#39;t be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } // ==============================Methods========================================== /** * 获得下一个ID (该方法是线程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 if (timestamp

补充知识:雪花算法实现分布式自增长ID

我就废话不多说了,大家还是直接看代码吧~

/**
 * 

名称:IdWorker.java

*

描述:分布式自增长ID

*
 * Twitter的 Snowflake JAVA实现方案
 * 
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用: * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间, * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识), * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分), * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。 *

* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加)) * * @author Polim */ public class IdWorker { // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动) private final static long twepoch = 1288834974657L; // 机器标识位数 private final static long workerIdBits = 5L; // 数据中心标识位数 private final static long datacenterIdBits = 5L; // 机器ID最大值 private final static long maxWorkerId = -1L ^ (-1L < maxWorkerId || workerId <0) { throw new IllegalArgumentException(String.format("worker Id can&#39;t be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId <0) { throw new IllegalArgumentException(String.format("datacenter Id can&#39;t be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 获取下一个ID * * @return */ public synchronized long nextId() { long timestamp = timeGen(); if (timestamp * 获取 maxWorkerId *

*/ protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) { StringBuffer mpid = new StringBuffer(); mpid.append(datacenterId); String name = ManagementFactory.getRuntimeMXBean().getName(); if (!name.isEmpty()) { /* * GET jvmPid */ mpid.append(name.split("@")[0]); } /* * MAC + PID 的 hashcode 获取16个低位 */ return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1); } /** *

* 数据标识id部分 *

*/ protected static long getDatacenterId(long maxDatacenterId) { long id = 0L; try { InetAddress ip = InetAddress.getLocalHost(); NetworkInterface network = NetworkInterface.getByInetAddress(ip); if (network == null) { id = 1L; } else { byte[] mac = network.getHardwareAddress(); id = ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) mac[mac.length - 2]) <<8))) >> 6; id = id % (maxDatacenterId + 1); } } catch (Exception e) { System.out.println(" getDatacenterId: " + e.getMessage()); } return id; } }


推荐阅读
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 本文探讨了Go语言(Golang)的学习价值及其在Web开发领域的应用潜力,包括其独特的语言特性和为什么它是现代软件开发的理想选择。 ... [详细]
  • IOSG Weekly Brief | Fat NFT Thesis 与艺术朋克 #68
    IOSG Weekly Brief | Fat NFT Thesis 与艺术朋克 #68 ... [详细]
  • 本文详细介绍了MySQL 5.5及以上版本中事务管理的全过程,包括事务的启动、设置、锁机制以及解锁方法,旨在为开发者提供一个清晰、全面的操作指南,避免因网络资料分散而导致的学习障碍。 ... [详细]
  • 地理信息、定位技术及其在物联网中的应用
    地理位置信息是物联网系统中不可或缺的关键要素,它不仅提供了物理世界的坐标,还增强了物联网应用的实用性和准确性。本文探讨了位置服务的基本概念、关键技术及其在物联网中的重要作用,特别介绍了定位技术的最新进展。 ... [详细]
  • HTTP(超文本传输协议)是互联网上用于客户端和服务器之间交换数据的主要协议。本文详细介绍了HTTP的工作原理,包括其请求-响应机制、不同版本的发展历程以及HTTP数据包的具体结构。 ... [详细]
  • 网络层详解——湖南科技大学《计算机网络微课堂》笔记4.1
    本文详细介绍了网络层的主要路由协议,包括RIP、OSPF、BGP的工作原理及其特点,并探讨了IPv4数据报的首部格式、ICMP协议以及虚拟专用网(VPN)和网络地址转换(NAT)的相关知识。 ... [详细]
  • 深入解析Hcash的PoW+PoS混合共识机制优势
    本文探讨了Hcash项目如何通过结合工作量证明(PoW)和权益证明(PoS)两种共识机制,有效解决了单一机制下的诸多问题,如资源浪费、决策集中及安全风险等,实现了更广泛的社区参与和更高的安全性。 ... [详细]
  • J2EE平台集成了多种服务、API和协议,旨在支持基于Web的多层应用开发。本文将详细介绍J2EE平台中的13项关键技术规范,涵盖从数据库连接到事务处理等多个方面。 ... [详细]
  • 本文深入探讨了分布式文件系统的核心概念及其在现代数据存储解决方案中的应用,特别是针对大规模数据处理的需求。文章不仅介绍了多种流行的分布式文件系统和NoSQL数据库,还提供了选择合适系统的指导原则。 ... [详细]
  • Golang与微服务架构:构建高效微服务
    本文探讨了Golang在微服务架构中的应用,包括Golang的基本概念、微服务开发的优势、常用开发工具以及具体实践案例。 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
  • 构建高性能Feed流系统的设计指南
    随着移动互联网的发展,Feed流系统成为了众多社交应用的核心组成部分。本文将深入探讨如何设计一个高效、稳定的Feed流系统,涵盖从基础架构到高级特性的各个方面。 ... [详细]
  • 本书《Pro Git》深入探讨了 Git 版本控制系统的核心概念与高级功能,旨在帮助开发者和团队有效管理代码变更。通过实例和最佳实践,读者将学习如何利用 Git 提升工作效率。 ... [详细]
  • 尤洋:夸父AI系统——大规模并行训练的深度学习解决方案
    自从AlexNet等模型在计算机视觉领域取得突破以来,深度学习技术迅速发展。近年来,随着BERT等大型模型的广泛应用,AI模型的规模持续扩大,对硬件提出了更高的要求。本文介绍了新加坡国立大学尤洋教授团队开发的夸父AI系统,旨在解决大规模模型训练中的并行计算挑战。 ... [详细]
author-avatar
安全小护士
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有