热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

bzoj3143游走

Description:一个无向连通图,顶点从1编号到N,边从1编号到M。小Z在该图上进行随机游走,初始时小Z在1号顶点&#

Description:一个无向连通图,顶点从1编号到N,边从1编号到M。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
2≤N≤500

要用高斯消元做。
定义f[i]为期望的到点i的次数,du[i]为点i的度数。那么有
f[i]=∑j与i相邻,j≠nf[j]du[j]+[i==1]f[i] = \sum_{j与i相邻, j\neq n} \frac{f[j]}{du[j]} + [i==1]f[i]=ji,j=ndu[j]f[j]+[i==1]
注意点n只进不出,所以它对其他点的到达次数没有贡献。
点1一开始就有一次到达。

我们现在有了n个n元一次方程。由于这个方程不规则,所以我们只能用数值解法来解这个方程。这里采用高斯消元法。

把f解出来后,就把走每条边的期望次数g[e]求出来。
g[e]=f[e.u]du[e.u]+f[e.v]du[e.v]g[e] = \frac{f[e.u]}{du[e.u]} + \frac{f[e.v]}{du[e.v]}g[e]=du[e.u]f[e.u]+du[e.v]f[e.v]

然后从大到小排个序,从1到m标号即可。

代码:

#include
#include
#include
#include
#include
#include using namespace std;#define MAXN 511
#define MAXM 250011typedef pair<int, int> pii;const double eps &#61; 1e-8;struct GRAPH {vector<vector<int> > s;void ClearEdges() {for (auto& i : s) {i.resize(0);}}void Init(int n) {ClearEdges();s.resize(n &#43; 1);}void AddUndi(int u, int v) {s[u].push_back(v);s[v].push_back(u);}
};struct MATRIX {vector<vector<double> > s;MATRIX() {}MATRIX(size_t a, size_t b) {resize(a, b);}inline size_t row() const {return s.size();}inline size_t col() const {return s.at(0).size();}void resize(size_t a, size_t b) {s.resize(a);for (size_t i &#61; 0; i < a; &#43;&#43;i)s[i].resize(b);}void clear() {for (auto& i : s)for (auto& j : i)j &#61; 0;}void swap_row(size_t i, size_t j, size_t k &#61; 0) {for (; k < col(); &#43;&#43;k)swap(s[i][k], s[j][k]);}//s[i] -&#61; s[j] * dvoid sub_row(size_t i, size_t j, double d, size_t k &#61; 0) {for (; k < col(); &#43;&#43;k)s[i][k] -&#61; d * s[j][k];}//O(n^3)void ToUpper(MATRIX& b) {for (size_t i &#61; 0; i < row(); &#43;&#43;i) {double maxv &#61; fabs(s[i][i]);size_t mr &#61; i;for (size_t j &#61; i &#43; 1; j < row(); &#43;&#43;j) {if (maxv < fabs(s[j][i])) {maxv &#61; fabs(s[j][i]);mr &#61; j;}}swap_row(i, mr, i);b.swap_row(i, mr);if (maxv < eps) continue;for (size_t j &#61; i &#43; 1; j < row(); &#43;&#43;j) {double d &#61; s[j][i] / s[i][i];sub_row(j, i, d, i);b.sub_row(j, i, d);}}}
};//ax &#61; b
MATRIX solve_destory(MATRIX& a, MATRIX& b) {a.ToUpper(b);for (int i &#61; a.row() - 1; i; --i) {assert(fabs(a.s[i][i]) > eps);b.s[i][0] /&#61; a.s[i][i];for (int j &#61; 0; j < i; &#43;&#43;j) {b.s[j][0] -&#61; b.s[i][0] * a.s[j][i];}}return b;
}int main() {GRAPH g;static pii es[MAXM];static double gs[MAXN];int n, m;scanf("%d%d", &n, &m);g.Init(n);for (int i &#61; 0; i < m; &#43;&#43;i) {scanf("%d%d", &es[i].first, &es[i].second);--es[i].first;--es[i].second;}for (int i &#61; 0; i < m; &#43;&#43;i) {g.AddUndi(es[i].first, es[i].second);}MATRIX b(n, 1);b.clear();b.s[0][0] &#61; 1;MATRIX a(n, n);for (int i &#61; 0; i < n; &#43;&#43;i) {a.s[i][i] &#61; 1;for (int v : g.s[i]) {if (v !&#61; n-1)a.s[i][v] &#61; -1.0 / g.s[v].size();}}b &#61; solve_destory(a, b);b.s[n-1][0] &#61; 0;for (int i &#61; 0; i < m; &#43;&#43;i) {gs[i] &#61; b.s[es[i].first][0] / g.s[es[i].first].size() &#43; b.s[es[i].second][0] / g.s[es[i].second].size();}sort(gs, gs &#43; m, greater<double>());double ans &#61; 0;for (int i &#61; 0; i < m; &#43;&#43;i) {ans &#43;&#61; gs[i] * (i &#43; 1);}printf("%.3f\n", ans);return 0;
}


推荐阅读
  • 题目概述:Sereja 拥有一个由 n 个整数组成的数组 a1, a2, ..., an。他计划执行 m 项操作,这些操作包括更新数组中的特定元素、增加数组中所有元素的值,以及查询数组中的特定元素。 ... [详细]
  • 题目描述:Balala Power! 时间限制:4000/2000 MS (Java/Other) 内存限制:131072/131072 K (Java/Other)。题目背景及问题描述详见正文。 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • 本文详细探讨了HihoCoder平台上的1398号问题——最大权闭合子图的求解方法。通过具体实例,深入分析了最大权闭合子图的概念及其算法实现。 ... [详细]
  • 探讨了一个包含纯虚函数的C++代码片段,分析了其中的语法错误及逻辑问题,并提出了修正方案。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 本文介绍了一个来自AIZU ONLINE JUDGE平台的问题,即清洁机器人2.0。该问题来源于某次编程竞赛,涉及复杂的算法逻辑与实现技巧。 ... [详细]
  • 本文针对HDU 1042 N! 问题提供详细的解析和代码实现。题目要求计算给定整数N(0 ≤ N ≤ 10000)的阶乘N!。文章不仅提供了算法思路,还附上了C++语言的具体实现。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 本文详细介绍了在Luat OS中如何实现C与Lua的混合编程,包括在C环境中运行Lua脚本、封装可被Lua调用的C语言库,以及C与Lua之间的数据交互方法。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • hlg_oj_1116_选美大赛这题是最长子序列,然后再求出路径就可以了。开始写的比较乱,用数组什么的,后来用了指针就好办了。现在把代码贴 ... [详细]
  • 本文详细介绍了Linux系统中信号量的相关函数,包括sem_init、sem_wait、sem_post和sem_destroy,解释了它们的功能和使用方法,并提供了示例代码。 ... [详细]
  • 本文深入探讨了Go语言中的接口型函数,通过实例分析其灵活性和强大功能,帮助开发者更好地理解和运用这一特性。 ... [详细]
  • spring boot使用jetty无法启动 ... [详细]
author-avatar
粪想升或_519
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有