热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

最短路径问题的几种算法

Floyd算法使用条件可以求出多源最短路,可以处理负权边的情况,但是不能出现负环。时间复杂度O(n3)讲解Floyed算法使用的是动态规划的方法。我们首先观察上图。我们来想一想,根
Floyd算法

使用条件

可以求出多源最短路,可以处理负权边的情况,但是不能出现负环。

时间复杂度

O(n3

讲解

Floyed算法使用的是动态规划的方法。

技术图片

       我们首先观察上图。

       我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。

       当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下。

技术图片

 我们如果在每两个点之间设置一个中转点,看看是使用这个中转点之前路程更短还是使用之后路程更短,而两个点到中转点的距离都已经是最短路程,这样最后计算出来的就一定是最短路程了。

只需要使用最简单粗暴的做法,将出发点、结束点、中转点都枚举一遍就可以了。

状态转移方程:

d[i][j]=min(d[i][k]+d[k][j],d[i][j])

这样,再写出Floyd算法的核心代码就很容易了。

另外需要注意的是:Floyd算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

技术图片

核心代码

for(k=1;k<=n;k++) //枚举中转点
    for(i=1;i<=n;i++) //枚举起点        
        for(j=1;j<=n;j++)          //枚举终点
            d[i][j]=min(d[i][k]+d[k][j],d[i][j]);
Dijkstra算法

使用条件

求单源最短路径,不能处理负权。

时间复杂度

O(n2

讲解

Dijkstra算法使用的是贪心方法,d[i]表示起点s0到i的最短距离。

从起点s0开始,选择未访问过的离s0最近的一个点i,也就是最小的d[i],因为所以边权为正,不会存在更短的路径到达i,保证了贪心的正确性。然后将i作为中间点,更新经过i可到达的点的最短路距离,继续贪心寻找未访问过的最近的一个点,经过n次贪心,算法结束。

看图:

技术图片技术图片

根据这个图,Dijkstra算法应该就很好理解了。

核心代码

for (i = 1; k <= n; k++)
{
    maxn = 0x7fffffff;
    for (j = 1; j <= n; j++)                 //找出未访问最小的d[j]
    {
        if (!vis[j] && d[j] < maxn)
        {
            maxn = d[j];
            k = i;
        }

    }
    vis[k] = 1;
    for (j = 1; j <= n; j++)          //k作为中间点,更新起点经过k到达其他点的d[j]
        if (w[k][j])
        {
            d[j] = min{ d[k] + w[k][j],d[j] };
        }
}
SPFA算法

使用条件

求单源最短路,可以处理负权边

时间复杂度

对于稀疏图,为O(km),k为较小的常数,而对于稠密图或者构造的网格图,会提高到O(n*m)

讲解

建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。

图:

技术图片

源点A首先入队,并且AB松弛

技术图片

扩展与A相连的边,B,C 入队并松弛。

技术图片

B,C分别开始扩展,D入队并松弛

技术图片

D出队,E入队并松弛。

技术图片

E出队,此时队列为空,源点到所有点的最短路已被找到,A->E的最短路即为8

技术图片

以上就是SPFA算法的过程。

核心代码

q.push(s);
vis[s]=1;  //源点s入队,标记入队
while(q.size())
{
       u=q.front();q.pop();vis[u]=0;        //取出队头,标记未入队
       for(i=head[u];i;i=next[i])
       {
              v=ver[i];
              w=edge[i];
              if(dis[u]+w<dis[v])
              {
                     dis[v]=dis[u]+w;
                     if(!vis[v])   {q.push(v);vis[v]=1;}    //如果没有在队列,入队,标记已入队
              }    
       }
}

最短路径问题的几种算法


推荐阅读
  • 本文探讨了程序员这一职业的本质,认为他们是专注于问题解决的专业人士。文章深入分析了他们的日常工作状态、个人品质以及面对挑战时的态度,强调了编程不仅是一项技术活动,更是个人成长和精神修炼的过程。 ... [详细]
  • 在日常生活中,支付宝已成为不可或缺的支付工具之一。本文将详细介绍如何通过支付宝实现免费提现,帮助用户更好地管理个人财务,避免不必要的手续费支出。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 数据类型--char一、char1.1char占用2个字节char取值范围:【0~65535】char采用unicode编码方式char类型的字面量用单引号括起来char可以存储一 ... [详细]
  • 心理学经典:《思考致富》
    《思考致富》是由美国著名成功学大师拿破仑·希尔撰写的一部重要著作,该书基于希尔长达20年的深入研究和访谈,探讨了个人成功的核心要素。书中不仅揭示了成功的关键,还提供了一系列实用的方法和策略。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 本文将从基础概念入手,详细探讨SpringMVC框架中DispatcherServlet如何通过HandlerMapping进行请求分发,以及其背后的源码实现细节。 ... [详细]
  • Windows操作系统提供了Encrypting File System (EFS)作为内置的数据加密工具,特别适用于对NTFS分区上的文件和文件夹进行加密处理。本文将详细介绍如何使用EFS加密文件夹,以及加密过程中的注意事项。 ... [详细]
  • 回顾两年前春节期间的一个个人项目,该项目原本计划参加竞赛,但最终作为练习项目完成。独自完成了从编码到UI设计的全部工作,尽管代码量不大,但仍有一定的参考价值。本文将详细介绍该项目的背景、功能及技术实现。 ... [详细]
  • 如何在PHP中安装Xdebug扩展
    本文介绍了如何从PECL下载并编译安装Xdebug扩展,以及如何配置PHP和PHPStorm以启用调试功能。 ... [详细]
  • 本文探讨了在一个物理隔离的环境中构建数据交换平台所面临的挑战,包括但不限于数据加密、传输监控及确保文件交换的安全性和可靠性。同时,作者结合自身项目经验,分享了项目规划、实施过程中的关键决策及其背后的思考。 ... [详细]
  • 解决Visual Studio Code中PHP Intelephense误报问题
    PHP作为一种高度灵活的编程语言,其代码结构可能导致Intelephense插件在某些情况下报告不必要的错误或警告。自1.3.3版本起,Intelephense引入了多个配置选项,允许用户根据具体的工作环境和编程风格调整这些诊断信息的显示。 ... [详细]
  • 本文将详细介绍如何在二进制和十六进制之间进行准确的转换,并提供实际的代码示例来帮助理解这一过程。 ... [详细]
author-avatar
手机用户2602884633
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有