作者:yyuunn传奇 | 来源:互联网 | 2023-10-15 16:45
#这段代码的作用是实现在地图中随机导航。在ros下需要先加载机器人和相关配置,详请参阅古-月的博客http:blog.csdn.nethcx25909articledetails121
#这段代码的作用是实现在地图中随机导航。在ros下需要先加载机器人和相关配置,详请参阅 古-月 的博客http://blog.csdn.net/hcx25909/article/details/12110959
#这里主要是用于自己来理解这段代码
#!/usr/bin/env python
import rospy
import actionlib
from actionlib_msgs.msg import *
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
from random import sample
from math import pow, sqrt
class NavTest():
def __init__(self):
rospy.init_node('nav_test', anOnymous=True)
rospy.on_shutdown(self.shutdown)#rospyAPI:on_shutdown()
# How long in seconds should the robot pause at each location?
#在每个目标点停留的时间
self.rest_time = rospy.get_param("~rest_time", 10)#API get_param
# Are we running in the fake simulator?
#是否是在模拟环境中运行
self.fake_test = rospy.get_param("~fake_test", False)
# Goal state return values
#目标状态返回值
goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
'SUCCEEDED', 'ABORTED', 'REJECTED',
'PREEMPTING', 'RECALLING', 'RECALLED',
'LOST']
# Set up the goal locations. Poses are defined in the map frame.
#设置目标位置,在地图坐标系中的姿态
# An easy way to find the pose coordinates is to point-and-click
#找到某一姿态的坐标,选中然后单击
# Nav Goals in RViz when running in the simulator.
#
# Pose coordinates are then displayed in the terminal
# that was used to launch RViz.
locatiOns= dict()
#这里定义了六个定位点的姿态
locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000), Quaternion(0.000, 0.000, 0.223, 0.975))
locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000), Quaternion(0.000, 0.000, -0.670, 0.743))
locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000), Quaternion(0.000, 0.000, 0.733, 0.680))
locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000), Quaternion(0.000, 0.000, 0.786, 0.618))
locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000), Quaternion(0.000, 0.000, 0.480, 0.877))
locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000), Quaternion(0.000, 0.000, 0.892, -0.451))
# Publisher to manually control the robot (e.g. to stop it)
#发布控制机器人的消息
self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist)
# Subscribe to the move_base action server
#订阅move_base动作服务
self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
rospy.loginfo("Waiting for move_base action server...")
# Wait 60 seconds for the action server to become available
#等60s
self.move_base.wait_for_server(rospy.Duration(60))
rospy.loginfo("Connected to move base server")
# A variable to hold the initial pose of the robot to be set by
#用户在rviz中设置机器人的初始位姿的变量
# the user in RViz
initial_pose = PoseWithCovarianceStamped()
# Variables to keep track of success rate, running time,
#保存成功率、运行时间、运动距离的变量们
# and distance traveled
n_locatiOns= len(locations)
n_goals = 0
n_successes = 0
i = n_locations
distance_traveled = 0
start_time = rospy.Time.now()
running_time = 0
location = ""
last_location = ""
# Get the initial pose from the user
#由用户处获取初始位姿
rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...")
rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
self.last_location = Pose()
rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
# Make sure we have the initial pose
#确保有初始位姿
while initial_pose.header.stamp == "":
rospy.sleep(1)
rospy.loginfo("Starting navigation test")
# Begin the main loop and run through a sequence of locations
#开始主循环,跑一个定位的序列
while not rospy.is_shutdown():
# If we've gone through the current sequence,
#如果结束了当前序列,开始一个新的序列
# start with a new random sequence
if i == n_locations:
i = 0
sequence = sample(locations, n_locations)####
# Skip over first location if it is the same as
# the last location
#如果最后一个位置和第一个位置一样,则跳过第一个位置
if sequence[0] == last_location:
i = 1
# Get the next location in the current sequence
#获取当前序列中的下一个位置
location = sequence[i]
# Keep track of the distance traveled.
#跟踪行驶的距离
# Use updated initial pose if available.
#使用更新的初始位姿
if initial_pose.header.stamp == "":
distance = sqrt(pow(locations[location].position.x -
locations[last_location].position.x, 2) +
pow(locations[location].position.y -
locations[last_location].position.y, 2))
else:
rospy.loginfo("Updating current pose.")
distance = sqrt(pow(locations[location].position.x -
initial_pose.pose.pose.position.x, 2) +
pow(locations[location].position.y -
initial_pose.pose.pose.position.y, 2))
initial_pose.header.stamp = ""
# Store the last location for distance calculations
#存储上一个位置来计算距离
last_location = location
# Increment the counters
#计数器增加1
i += 1
n_goals += 1
# Set up the next goal location
#设置下一个目标点
self.goal = MoveBaseGoal()###
self.goal.target_pose.pose = locations[location]
self.goal.target_pose.header.frame_id = 'map'
self.goal.target_pose.header.stamp = rospy.Time.now()
# Let the user know where the robot is going next
#告诉用户下一个位置
rospy.loginfo("Going to: " + str(location))
# Start the robot toward the next location
#开始向下一个位置前进
self.move_base.send_goal(self.goal)#move_base.send_goal()
# Allow 5 minutes to get there
#设置时间,5分钟之内到达
finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))
# Check for success or failure
#检查是否成功到达
if not finished_within_time:
self.move_base.cancel_goal()#move_base.cancle_goal()
rospy.loginfo("Timed out achieving goal")
else:
state = self.move_base.get_state()#move_base.get_state()
if state == GoalStatus.SUCCEEDED:
rospy.loginfo("Goal succeeded!")
n_successes += 1
distance_traveled += distance
rospy.loginfo("State:" + str(state))
else:
rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))
# How long have we been running?
#已经运行了多长时间
running_time = rospy.Time.now() - start_time
running_time = running_time.secs / 60.0
# Print a summary success/failure, distance traveled and time elapsed
#打印一个总结信息,成功与否,形驶的距离和消耗的时间
rospy.loginfo("Success so far: " + str(n_successes) + "/" +
str(n_goals) + " = " +
str(100 * n_successes/n_goals) + "%")
rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
" min Distance: " + str(trunc(distance_traveled, 1)) + " m")
rospy.sleep(self.rest_time)
#更新初始位姿的函数
def update_initial_pose(self, initial_pose):
self.initial_pose = initial_pose
#关机处理函数
def shutdown(self):
rospy.loginfo("Stopping the robot...")
self.move_base.cancel_goal()
rospy.sleep(2)
self.cmd_vel_pub.publish(Twist())
rospy.sleep(1)
def trunc(f, n):
# Truncates/pads a float f to n decimal places without rounding
#拉长/缩短一个浮点数f到一个n位小数
slen = len('%.*f' % (n, f))
return float(str(f)[:slen])
if __name__ == '__main__':
try:
NavTest()
rospy.spin()
except rospy.ROSInterruptException:
rospy.loginfo("AMCL navigation test finished.")
原文转自:http://blog.csdn.net/dulaiduwangduxing/article/details/42967441