热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

干货整理:处理不平衡数据的技巧总结!收好不谢

文:RickRadewagen译:李萌在银行欺诈检测,市场实时竞价或网络入侵检测等领域通常是什么样的数据集呢?在这些领域使用的数据通常有

640?wx_fmt=gif&wxfrom=5&wx_lazy=1


文:Rick Radewagen

译:李萌


在银行欺诈检测,市场实时竞价或网络入侵检测等领域通常是什么样的数据集呢?


在这些领域使用的数据通常有不到1%少量但“有趣的”事件,例如欺诈者利用信用卡,用户点击广告或者损坏的服务器扫描网络。 


然而,大多数机器学习算法对于不平衡数据集的处理不是很好。 以下七种技术可以帮你训练分类器来检测异常类。


1.使用正确的评估指标 



对使用不平衡数据生成的模型应用不恰当的评估指标可能是危险的。


640?wx_fmt=png&wxfrom=5&wx_lazy=1


想象一下,我们的训练数据如上图所示。 如果使用精度来衡量模型的好坏,使用将所有测试样本分类为“0”的模型具有很好的准确性(99.8%),但显然这种模型不会为我们提供任何有价值的信息。


在这种情况下,可以应用其他替代评估指标,例如:

  • 精度/特异性:有多少个选定的相关实例。

  • 调用/灵敏度:选择了多少个相关实例。

  • F1得分:精度和召回的谐波平均值。

  • MCC:观察和预测的二进制分类之间的相关系数。

  • AUC:正确率与误报率之间的关系。



2.重新采样训练集 



除了使用不同的评估标准外,还可以选择不同的数据集。使平衡数据集不平衡的两种方法:欠采样和过采样。


欠采样通过减少冗余类的大小来平衡数据集。当数据量足够时使用此方法。通过将所有样本保存在少数类中,并在多数类中随机选择相等数量的样本,可以检索平衡的新数据集以进一步建模。


相反,当数据量不足时会使用过采样,尝试通过增加稀有样本的数量来平衡数据集。不是去除样本的多样性,而是通过使用诸如重复,自举或SMOTE等方法生成新样本(合成少数过采样技术)


请注意,一种重采样方法与另一种相比没有绝对的优势。这两种方法的应用取决于它适用的用例和数据集本身。过度取样和欠采样不足结合使用也会有很好的效果。



3.以正确的方式使用K-fold交叉验证 


值得注意的是,使用过采样方法来解决不平衡问题时,应适当地应用交叉验证。切记,过采样会观察到稀有的样本,并根据分布函数自举生成新的随机数据。如果在过采样之后应用交叉验证,那么我们所做的就是将模型过度适应于特定的人工引导结果。这就是为什么在过采样数据之前应该始终进行交叉验证,就像实现特征选择一样。只有对数据进行重复采样,可以将随机性引入到数据集中,以确保不会出现过拟合问题。


4.组合不同的重采样数据集


 

生成通用模型的最简单方法是使用更多的数据。问题是,开箱即用的分类器,如逻辑回归或机森随林,倾向于通过丢弃稀有样例来推广。一个简单的最佳实现是建立n个模型,使用少数类的所有样本和数量充足类别的n个不同样本。假如您想要组合10个模型,需要少数类1000例,随机抽取10.000例多数类的样本。然后,只需将10000个样本分成10个块,训练出10个不同的模型。


640?wx_fmt=png


 如果您有大量数据,那么这种方法很简单,完美地实现水平扩展,因此您可以在不同的集群节点上训练和运行模型。集合模型也趋于一般化,使得该方法容易处理。


5.用不同比例重新采样


 

以前的方法可以通过少数类和多数类之间的比例进行微调。最好的比例在很大程度上取决于所使用的数据和模型。但是,不是在整体中以相同的比例训练所有模型,合并不同的比例值得尝试。 所以如果训练了10个模型,对一个模型比例为1:1(少数:多数),另一个1:3甚至是2:1的模型是有意义的。 根据使用的模型可以影响一个类获得的权重。


640?wx_fmt=png



6. 对多数类进行聚类


 

Sergey Quora提出了一种优雅的方法[2]。他建议不要依赖随机样本来覆盖训练样本的种类,而是将r个分组中的多数类进行聚类,其中r为r中的样本数。对于每个组,只保留质心(样本的中心)。然后该模型仅保留了少数类和样本质心来训练。


7.设计自己的模型


 

以前的所有方法都集中在数据上,并将模型作为固定的组件。但事实上,如果模型适用于不平衡数据,则不需要对数据进行重新采样。如果数据样本没有太多的倾斜,著名的XGBoost已经是一个很好的起点,因为该模型内部对数据进行了很好的处理,它训练的数据并不是不平衡的。但是再次,如果数据被重新采样,它只是悄悄进行。

 

通过设计一个损失函数来惩罚少数类的错误分类,而不是多数类,可以设计出许多自然泛化为支持少数类的模型。例如,调整SVM以相同的比例惩罚未被充分代表的少数类的分类错误。

640?wx_fmt=png



综上所述


这不是一份独家的技术清单,而是处理不平衡数据的一个起点。


没有适合所有问题的最佳方法或模型,强烈建议您尝试不同的技术和模型来评估哪些方法最有效。 可以尝试创造性地结合不同的方法。


同样重要的是,要注意在不平衡类出现的许多领域(例如欺诈检测,实时竞价)中,“市场规则”正在不断变化。所以,要查看一下过去的数据是否已经过时了。


文章版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请留言联系删除,感谢合作。

640?wx_fmt=png


640?wx_fmt=jpeg


推荐阅读
  • 如何用UE4制作2D游戏文档——计算篇
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了如何用UE4制作2D游戏文档——计算篇相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 本文介绍了Hyperledger Fabric外部链码构建与运行的相关知识,包括在Hyperledger Fabric 2.0版本之前链码构建和运行的困难性,外部构建模式的实现原理以及外部构建和运行API的使用方法。通过本文的介绍,读者可以了解到如何利用外部构建和运行的方式来实现链码的构建和运行,并且不再受限于特定的语言和部署环境。 ... [详细]
  • 本文介绍了如何使用python从列表中删除所有的零,并将结果以列表形式输出,同时提供了示例格式。 ... [详细]
  • 分享2款网站程序源码/主题等后门检测工具
    本文介绍了2款用于检测网站程序源码和主题中是否存在后门的工具,分别是WebShellkiller和D盾_Web查杀。WebShellkiller是一款支持webshell和暗链扫描的工具,采用多重检测引擎和智能检测模型,能够更精准地检测出已知和未知的后门文件。D盾_Web查杀则使用自行研发的代码分析引擎,能够分析更为隐藏的WebShell后门行为。 ... [详细]
  • Linux如何安装Mongodb的详细步骤和注意事项
    本文介绍了Linux如何安装Mongodb的详细步骤和注意事项,同时介绍了Mongodb的特点和优势。Mongodb是一个开源的数据库,适用于各种规模的企业和各类应用程序。它具有灵活的数据模式和高性能的数据读写操作,能够提高企业的敏捷性和可扩展性。文章还提供了Mongodb的下载安装包地址。 ... [详细]
  • Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令JAVA_HOMEbinjava–option来启 ... [详细]
  • 开发笔记:小白python机器学习之路——支持向量机
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了小白python机器学习之路——支持向量机相关的知识,希望对你有一定的参考价值。支持 ... [详细]
  • flowable工作流 流程变量_信也科技工作流平台的技术实践
    1背景随着公司业务发展及内部业务流程诉求的增长,目前信息化系统不能够很好满足期望,主要体现如下:目前OA流程引擎无法满足企业特定业务流程需求,且移动端体 ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 本文介绍了Linux Shell中括号和整数扩展的使用方法,包括命令组、命令替换、初始化数组以及算术表达式和逻辑判断的相关内容。括号中的命令将会在新开的子shell中顺序执行,括号中的变量不能被脚本余下的部分使用。命令替换可以用于将命令的标准输出作为另一个命令的输入。括号中的运算符和表达式符合C语言运算规则,可以用在整数扩展中进行算术计算和逻辑判断。 ... [详细]
  • 单点登录原理及实现方案详解
    本文详细介绍了单点登录的原理及实现方案,其中包括共享Session的方式,以及基于Redis的Session共享方案。同时,还分享了作者在应用环境中所遇到的问题和经验,希望对读者有所帮助。 ... [详细]
  • 机器学习之数据均衡算法种类大全+Python代码一文详解
    目录前言一、为什么要做数据均衡?二、数据场景1.大数据分布不均衡2.小数据分布不均衡三、均衡算法类型1.过采样2.欠采样3.组合采样四、算法具体种类1 ... [详细]
  • Stanford机器学习第九讲. 聚类
    原文:http:blog.csdn.netabcjenniferarticledetails7914952本栏目(Machinelearning)包括单参数的线性回归、多参数的线性 ... [详细]
  • LibSvm python 调试实验
    1.我安装的python是python-2.5.1,安装在C盘的c:\Python25路径下2.我的gnuplot是直接用的研学论坛上的附件Libsvm-2_6.ra ... [详细]
  • 开源真香 离线识别率高 Python 人脸识别系统
    本文主要介绍关于python,人工智能,计算机视觉的知识点,对【开源真香离线识别率高Python人脸识别系统】和【】有兴趣的朋友可以看下由【000X000】投稿的技术文章,希望该技术和经验能帮到 ... [详细]
author-avatar
liuc
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有