热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

YOLOv3配置(Ubuntu版本附weight资源)

(YOLO)是最新的实时物体检测系统。将单个神经网络应用于完整图像。该网络将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框由预测的概率加权,与基于分类器的系统相比,我

(YOLO)是最新的实时物体检测系统。将单个神经网络应用于完整图像。该网络将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框由预测的概率加权,与基于分类器的系统相比,我们的模型具有多个优势。它在测试时查看整个图像,因此其预测由图像中的全局上下文提供。与像R-CNN这样的系统需要数千个单个图像的系统不同,它还可以通过单个网络评估来进行预测。

                                              

Darknet会打印出它检测到的对象,其置信度以及找到它们所花费的时间。我们没有使用Darknet进行编译,OpenCV因此无法直接显示检测结果。而是将它们保存在中predictions.png。您可以打开它以查看检测到的对象。在CPU上使用Darknet,每个图像大约需要6-12秒。如果使用GPU版本,它将更快。

 

                                     

step4 修改配置文件改成GPU版本


cd darknet

vim  Makefile

将其设定为

                   GPU=1

                   CUDNN=1

                   OPENCV =1

保存后重新make:

                            make clean  

                             make


由于我的显卡是mx150 所以cuda、cudnn就没有弄,单纯的用cpu跑的。遗憾啊!


data_cfg:数据配置文件,eg:cfg/voc.data

  models_cfg:模型配置文件,eg:cfg/yolov3-voc.cfg

  weights:权重配置文件,eg:weights/yolov3.weights

  test_file:测试文件,eg:*/*/*/test.txt

  -thresh:显示被检测物体中confidence大于等于 [-thresh] 的bounding-box,默认0.005

  -out:输出文件名称,默认路径为results文件夹下,eg:-out "" //输出class_num个文件,文件名为class_name.txt;若不选择此选项,则默认输出文件名为comp4_det_test_"class_name".txt

  -i/-gpu:指定单个gpu,默认为0,eg:-gpu 2

  -gpus:指定多个gpu,默认为0,eg:-gpus 0,1,2






  • 点赞



  • 收藏



  • 分享




    • 文章举报






ArchieFan
发布了45 篇原创文章 · 获赞 60 · 访问量 1万+
私信

关注

推荐阅读
  • 操作系统如何通过进程控制块管理进程
    本文详细介绍了操作系统如何通过进程控制块(PCB)来管理和控制进程。PCB是操作系统感知进程存在的重要数据结构,包含了进程的标识符、状态、资源清单等关键信息。 ... [详细]
  • 如何撰写数据分析师(包括转行者)的面试简历?
    CDA数据分析师团队出品,作者:徐杨老师,编辑:Mika。本文将帮助您了解如何撰写一份高质量的数据分析师简历,特别是对于转行者。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 斯坦福大学公开课:利用神经网络技术实现自动驾驶的案例分析
    斯坦福大学的公开课深入探讨了如何利用神经网络技术实现自动驾驶。课程中通过实例展示了汽车如何通过学习算法自主驾驶。具体而言,课程展示了一幅图解,其中左下角显示了汽车前方的实时路况图像,而左上角则呈现了一个水平的菜单栏,用于展示系统处理和决策的过程。这一案例详细解析了神经网络在自动驾驶中的应用,为学生提供了宝贵的实践参考。 ... [详细]
  • 每日学术推荐:异质图神经网络在抽取式文档摘要中的应用研究
    在抽取式文档摘要任务中,学习跨句子关系是至关重要的一步。本文探讨了利用异质图神经网络来捕捉句子间复杂关系的有效方法。通过构建包含不同类型节点和边的图结构,模型能够更准确地识别和提取关键信息,从而生成高质量的摘要。实验结果表明,该方法在多个基准数据集上显著优于传统方法。 ... [详细]
  • 近期的研究和探讨表明,人类意识的核心在于其方向性和目标导向性,而现有的现代神经网络技术尚无法完全模拟或创造这种意识。尽管如此,通过不断优化神经网络架构和算法,我们可以在特定任务中实现更高水平的智能化创新,从而推动人工智能领域的进一步发展。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 神经网络在二分类任务中输出层应配置多少神经元及选择何种激活函数?处理MNIST数据集时输出层神经元数量与激活函数如何确定?神经网络预测房价时输出层神经元数量和激活函数的选择策略?
    在神经网络进行二分类任务时,输出层应配置多少个神经元以及选择哪种激活函数是一个关键问题。对于MNIST数据集的处理,输出层的神经元数量和激活函数的选择策略是什么?而在预测房价的任务中,输出层的神经元数量和激活函数又该如何确定?本文将详细探讨这些选择背后的原理和实践建议,以帮助读者更好地理解和应用神经网络模型。 ... [详细]
  • 中国学者实现 CNN 全程可视化,详尽展示每次卷积、ReLU 和池化过程 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 射频领域的博士学位在信号处理算法方面具有广阔的职业前景,尤其是在射频技术的应用中。例如,加入华为的射频基站部门,从事数字预失真等关键技术的研发工作。在此过程中,需要注意持续跟踪最新的学术和技术进展,保持对行业动态的敏感性,并不断提升自身的实践能力和创新能力。此外,除了技术层面,还应关注行业的整体发展趋势,以便更好地规划职业生涯。 ... [详细]
  • 本文将深入探讨生成对抗网络(GAN)在计算机视觉领域的应用。作为该领域的经典模型,GAN通过生成器和判别器的对抗训练,能够高效地生成高质量的图像。本文不仅回顾了GAN的基本原理,还将介绍一些最新的进展和技术优化方法,帮助读者全面掌握这一重要工具。 ... [详细]
  • 浅层神经网络解析:本文详细探讨了两层神经网络(即一个输入层、一个隐藏层和一个输出层)的结构与工作原理。通过吴恩达教授的课程,读者将深入了解浅层神经网络的基本概念、参数初始化方法以及前向传播和反向传播的具体实现步骤。此外,文章还介绍了如何利用这些基础知识解决实际问题,并提供了丰富的实例和代码示例。 ... [详细]
author-avatar
何霞2502856453_910
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有