热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

虚拟环境的创建以及labelme的使用教程

本来打算是将这两部分分开的,但写完虚拟环境的创建似乎字数太少了,不过二者有关联,所以就放一起了。简单介绍一下,虚拟环境的创建

本来打算是将这两部分分开的,但写完虚拟环境的创建似乎字数太少了,不过二者有关联,所以就放一起了。简单介绍一下,虚拟环境的创建有win11系统已经Ubuntu系统,labelme教程包括了下载及其使用的全部流程,以及我本人平时标注时使用的案例和快捷键,文末分享了json转png的脚本。希望这个教程能解决你的问题。

目录

Anaconda创建虚拟环境

win 11系统

Ubuntu系统

labelme的下载以及使用

1、激活环境

2、下载指定版本

3、创立图片文件夹

4、使用labelme标注

5、使用脚本将json转为png



Anaconda创建虚拟环境

win 11系统

我的是win11系统,可以点击搜索。或者是按下win+s键打开。

在里面输入Anaconda Prompt

初始是这样的:

(base) C:\Users\honor>

(base)是一个基础的环境,在这里我们先查看我们的虚拟环境

输入conda env list

除了base,其他都是我创建的虚拟环境,当然有的一直没有用。

然后我们需要创建自己的环境:conda create -n env_name python=3.7 

env-name就是环境的名称,可随意更改,python=3.7是环境安装的python版本,也可按需更改,高版本并不好,常常会出现一些bug,我最爱用的还是3.7及其下的版本。

  • 激活环境:activate env_name,然后你就可以根据需要pip下载包了
  • 退出环境:deactivate,我通常会省去这步,直接activate 其他的虚拟环境名,这样方便转换到其他虚拟环境
  • 删除虚拟环境:conda remove -n env_name --all

Ubuntu系统

当然啦,由于我们实验室有工作站,是Ubuntu系统的,情况类似,只是在激活环境和退出环境时,前面要加上source

  • 激活环境:source activate env_name
  • 退出环境:source deactivate
     

labelme的下载以及使用

首先,要安装好虚拟环境,如上所示,我的虚拟环境就叫labelme,专门使用它

1、激活环境

输入:activate labelme

2、下载指定版本

在该环境下,输入命令行

pip install labelme==3.16.7

据前辈所说,有些版本的labelme会发生错误,具体的错误为:Too many dimensions:3 > 2,

总之,这个下就行了。由于我的已经安装好了,所以这里不展示了。

3、创立图片文件夹

在一个文件下,我希望你有以下三个文件:

  • pic
  • json
  • lab

不管你的命名的是什么,搞清楚它们的作用就行了,pic是你需要标注的图片存放位置,json是你标注后生成的文件,lab是通过脚本将json文件转化为png格式的图片。




内容展示


4、使用labelme标注

激活环境后,直接输入labelme。

(labelme) C:\Users\honor>labelme

点击右边导航栏中顺数第二个,即可打开你需要标注的图片所在的文件夹进行批量标注。

我拿网上的数据集CrackForest,做为示范。

选中你要标记的图片,点击Create Polygons(顺数第七个)。

 

原始图片是这样的,在标注时一定要尽可能的放大最大去标注,你的预测效果与你的标注息息相关。如下图所示

记住一定要闭环,最后一个点一定要与起点相接。这里假设我们完成后,他就会出现这样的弹窗。

在这里的crack是我们自己输入的,输入一次后会默认,当然多个物体标注时,在下面的白色画布部分会有你想要分类的记录。

如果你觉得你自己有些点标注的地方不是很如意,可以点击Edit Ploygons(顺数第八个)。当你触碰到点时对应的点会变红变大,如果你移动到了中间的红色区域,你可以对其进行拖拽,对不满意的地方进行修改,这是其中的一个修改方法。

有些快捷键是你需要掌握的:

  • Ctrl+z:撤回上一个标注的点,不要一直按,它可能会同时将你已经标注好的区域全部撤回。
  • Ctrl+鼠标滚轮:对图片进行放大缩小
  • Alt+鼠标滚轮:左右横向移动
  • 鼠标滚轮:上下移动
  • Ctrl+s:保存

完成一张图后,一定一定要保存呀,位置就在json文件夹当中,保存成功后,右下角的File list对应图片的位置会有蓝底白色的小勾。

5、使用脚本将json转为png

Json2Image.py

import base64
import json
import os
import os.path as osp
import numpy as np
import PIL.Image
from labelme import utils
if __name__ == '__main__':
jpgs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\zjr"
pngs_path = "E:\Deeplearning\Road_Detect_Project\THREE_ZJR\png"
# classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# classes = ["_background_","cat","dog"]
classes = ["_background_", "crack"]
count = os.listdir("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json")
for i in range(0, len(count)):
path = os.path.join("E:\Deeplearning\Road_Detect_Project\THREE_ZJR\json", count[i])
print(count[i])
if os.path.isfile(path) and path.endswith('json'):
data = json.load(open(path), strict=False)
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0] + '.jpg'))
new = np.zeros([np.shape(img)[0], np.shape(img)[1]])
for name in label_names:
index_json = label_names.index(name)
index_all = classes.index(name)
new = new + index_all * (np.array(lbl) == index_json)
utils.lblsave(osp.join(pngs_path, count[i].split(".")[0] + '.png'), new)
print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

在这里面,凡是出现了路径都要改,对应的部分一定要分清楚,然后所需要分的类型也要修改,也就是classes变量。接着点击运行就可以了。我的建议呢就是每个工程文件下都留有这个py文件,有好处的。


推荐阅读
  • 本文介绍了如何利用Python进行批量图片尺寸调整,包括放大和等比例缩放。文中提供了详细的代码示例,并解释了每个步骤的具体实现方法。 ... [详细]
  • 社交网络中的级联行为 ... [详细]
  • Java 实现二维极点算法
    本文介绍了一种使用 Java 编程语言实现的二维极点算法。该算法用于从一组二维坐标中筛选出极点,适用于需要处理几何图形和空间数据的应用场景。文章不仅详细解释了算法的工作原理,还提供了完整的代码示例。 ... [详细]
  • Python Django大学生心理健康管理系统开发(含源码、文档)
    本项目包含完整的源代码、设计文档、数据库结构以及详细的安装指南,旨在为计算机专业的学生提供一个全面的心理健康管理系统解决方案。 ... [详细]
  • 在PHP后端开发中遇到一个难题:通过第三方类文件发送短信功能返回的JSON字符串无法解析。本文将探讨可能的原因并提供解决方案。 ... [详细]
  • CSS高级技巧:动态高亮当前页面导航
    本文介绍了如何使用CSS实现网站导航栏中当前页面的高亮显示,提升用户体验。通过为每个页面的body元素添加特定ID,并结合导航项的类名,可以轻松实现这一功能。 ... [详细]
  • 深入解析Spring启动过程
    本文详细介绍了Spring框架的启动流程,帮助开发者理解其内部机制。通过具体示例和代码片段,解释了Bean定义、工厂类、读取器以及条件评估等关键概念,使读者能够更全面地掌握Spring的初始化过程。 ... [详细]
  • Python包管理工具pip的使用指南
    本文详细介绍了如何使用pip进行Python包的安装、管理和常见问题的解决方法,特别针对国内用户提供了优化建议。 ... [详细]
  • Python + Pytest 接口自动化测试中 Token 关联登录的实现方法
    本文将深入探讨 Python 和 Pytest 在接口自动化测试中如何实现 Token 关联登录,内容详尽、逻辑清晰,旨在帮助读者掌握这一关键技能。 ... [详细]
  • 搭建Jenkins、Ant与TestNG集成环境
    本文详细介绍了如何在Ubuntu 16.04系统上配置Jenkins、Ant和TestNG的集成开发环境,涵盖从安装到配置的具体步骤,并提供了创建Windows Slave节点及项目构建的指南。 ... [详细]
  • 尝试执行数据库模式加载时遇到错误'Mysql2::Error: 指定的键太长;最大键长度为767字节'。本文将探讨这一问题的成因及解决方案。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • This request pertains to exporting the hosted_zone_id attribute associated with the aws_rds_cluster resource in Terraform configurations. The absence of this attribute can lead to issues when integrating DNS records with Route 53. ... [详细]
  • 历经三十年的开发,Mathematica 已成为技术计算领域的标杆,为全球的技术创新者、教育工作者、学生及其他用户提供了一个领先的计算平台。最新版本 Mathematica 12.3.1 增加了多项核心语言、数学计算、可视化和图形处理的新功能。 ... [详细]
  • Java 中重写与重载的区别
    本文详细解析了 Java 编程语言中重写(Override)和重载(Overload)的概念及其主要区别,帮助开发者更好地理解和应用这两种多态性机制。 ... [详细]
author-avatar
AinneJJ
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有